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ABSTRACT

Today, the use and purpose of imaging systems have become increasingly important in
recent years due to their unique capabilities. With the advancement of modern technology,
specialized imaging systems tailored to various application needs have diversified, leading
to a significant increase in related research and practical implementations. Various imaging
techniques beyond the visible spectrum, including IR, UV, thermal, and gamma imaging,
have emerged as powerful tools for capturing material characteristics that are not observable
through conventional visual methods. Recently, the integration of deep learning and machine
learning approaches into these imaging systems has aimed to minimize operational errors
and achieve more accurate outcomes. This study focuses on the classification of liquid
materials that are visually indistinguishable and highly similar in appearance. Convolutional
Neural Networks (CNNs), one of the most widely used deep learning-based image analysis
models, were employed for this task. The materials targeted for classification included water,
propanol (alcohol), acetone, cologne, and flux. Images of these substances were captured
using both Short-Wave Infrared (SWIR) and visible region (RGB) cameras, resulting in a
custom dataset comprising multispectral, SWIR, and RGB images. In the five-class
classification scenario, the test accuracy obtained from RGB camera images was 34.16%,
while SWIR camera images Yyielded a test accuracy of 59.96%. When multispectral images
were captured using filters with cutoff wavelengths at 1200 nm, 1300 nm, 1400 nm, 1500
nm, and 1600 nm, the classification performance significantly increased, reaching a test
accuracy of 96.46%. In addition to accuracy, the F1-score was also considered, as it reflects
both the precision of positive predictions and the overall balance of the model. The F1-scores
were recorded as 32.72% for RGB images, 41.62% for SWIR images, and 89.09% for
multispectral images. As a result, this study demonstrated that a deep learning-based
classification model can successfully distinguish between visually similar liquid substances.
It was shown that multispectral imaging notably enhances inter-class discriminability,
providing significantly improved classification performance compared to standard RGB and
SWIR imaging techniques.
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DERIN OGRENME UYGULAMALARINDA MATERYAL TESPITI ICIN SWIR
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OZET

Giinlimiizde goriintiileme sistemlerinin kullanimi ve amaci, sahip olduklar1 6zel kabiliyetler
sayesinde her gecen giin daha da 6nem kazanmaktadir. Modern teknolojide, uygulama
ihtiyaglarina gore cesitlenen goriintiileme sistemleri ile gergeklestirilen calismalar da hizla
artmakta ve cesitlenmektedir. Goriiniir bolge goriintileme disinda; kiziltesi (IR), gama,
termal ve ultraviyole (UV) gibi farkli spektral bantlarda ¢alisan 6zel gortintiileme yontemleri
de bu alanda 6nemli yer tutmaktadir. Son yillarda, uygulama hatalarini en aza indirmeyi
hedefleyen derin 0grenme ve makine Ogrenmesi yontemlerinin, bu tiir goriintiileme
sistemlerine entegre edilmesiyle daha basarili sonuglar elde edilmeye baslanmistir. Bu
caligmada ise, gorsel olarak ayirt edilmesi giic ve birbirine olduk¢a benzeyen sivi
malzemelerin siniflandirilmast hedeflenmistir. Derin 0grenme alaninda yaygin olarak
kullanilan goriintii tabanli modellerden olan Evrisimli Sinir Ag1 (CNN) mimarisi temel
alimmistir. Ayirt edilmesi hedeflenen malzemeler; su, propanol (alkol), aseton, kolonya ve
flux olarak belirlenmis ve bu maddelere ait goriintiiler, hem Kisa Dalga Kizilotesi (SWIR)
hem de goriiniir bolge (RGB) kameralar1 kullanilarak alinmistir. Boylece, multispektral,
SWIR ve RGB goriintiilerden olusan 6zel bir veri seti olusturulmustur. Besli siniflandirma
senaryosunda, RGB kamera goriintiileri ile elde edilen test dogrulugu %34,16; SWIR
goriintiileriyle %59,96 olarak belirlenmistir. SWIR kamera ile 1200 nm, 1300 nm, 1400 nm,
1500 nm ve 1600 nm dalga boylarinda alman multispektral goriintiilerle yapilan
siiflandirmada ise test dogrulugu %96,46'ya ulasmistir. Sadece dogruluk orani degil, ayni
zamanda siniflar arasi pozitif tahmin basarisin1 ve modelin genel dengesini yansittigi i¢in F1
skoru da degerlendirmeye dahil edilmistir. RGB goriintiiler ig¢in %32,72 olan F1 skoru,
SWIR goriintiilerinde %41,62 ve multispektral goriintiilerde %89,09 olarak kaydedilmistir.
Sonug olarak, bu ¢aligma kapsaminda derin 6grenme temelli bir siniflandirma modeli ile,
gozle ayirt edilmesi giic malzemelerin tespiti hedeflenmis; multispektral goriintiilleme
yonteminin, siniflar arasi ayirt ediciligi artirarak daha basarili sonuglar sundugu ortaya
konmustur.
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1. INTRODUCTION

In daily life, we interact with our environment through our sense organs. One of the most
important of these senses is our ability to see. Our eyes perform the visual function and
consist of various layers such as the iris and cornea. Most imaging systems are modeled like
the eye and consist of various layers. The working range of the human eye is approximately
between 380-740nm. The human eye, which has this limited working range, is not suitable
for working at different wavelengths in our environment or in some cases does not have the
ability to distinguish. For this reason, imaging systems capable of working at different
wavelengths have been developed. Systems with this ability, with appropriate filters and

processes, are used in various fields and for different purposes.

Imaging systems have so many different application areas in modern life such as industrial,
military, consumer, and medical applications [1]. Imaging methods cover certain regions of
the spectral band. The visible spectral band covers between about 400 nm and 800 nm. In
another study [2], a short-wavelength camera operating between approximately 900 nm and
2500 nm was used. Studies have been conducted that it is a method that can be used for
clinical approaches in the field of medicine. The SWIR imaging technique was used in

imaging the mouse head.

Each radiation region has its unique characteristics. Camera systems have special sensor
technologies that utilize from characteristics properties of radiation. For instance, thermal
cameras can detect heat radiation, or VNIR (Visible Near Infrared) cameras can be operated
at the low-level light. SWIR cameras capable of capturing images in foggy weather [3],
detecting rot or decay in the food industry, and identifying radiation at high temperatures
include VNIR and LWIR (Long-Wave Infrared) camera features. Imaging systems used for
surveillance, detection, observation, security, recognition, and identification may fail to
fulfill their intended purpose in some cases. For instance, visually similar materials may not
be distinguishable using visible imaging systems. Additionally, IR band imaging systems
may sometimes be insufficient for distinguishing certain objects. Therefore, newer and more

advanced imaging methods are being explored in ongoing research [4,5].



All objects have special spectral characteristics at different wavelengths. The multispectral
imaging technique is based on the principle of obtaining discrete images at different
wavelengths [6]. Feature extraction can be done on multispectral images by using filters. To
distinguish the materials whose visual spectral characteristics under visible light are similar
[7] multispectral imaging is performed, generally using the VIS/NIR band [8]. However, in
some conditions, this bandwidth is not enough for the application. The SWIR wavelength
provides a larger coverage area than VIS/NIR wavelength. Hence it is more practical for
object detection applications. Deep learning algorithms are applied to SWIR camera images
for many applications such as classification and surveillance [9-10]. The use of CNN based
architecture is especially common in deep learning applications [11-12]. There are different
CNN models with updated last versions, such as Visual Geometry Group (VGG) [13],
Densely Connected Convolutional Networks (Dense-Net) and Residual Networks (Res-Net)
[14].

There are several parameters used in deep learning algorithms such as dropout rate,
activation function, epoch number, learning rate, loss function, data augmentation,
normalization, and optimizer [15]. These parameters should be fine-tuned experimentally
for the architecture. Dropout rate is a method that avoids overfitting problems. SoftMax,
Rectified Linear Unit (ReLU), LeakyReL U, Hyperbolic Tangent, and Sigmoid. ReLU and
LeakyReLU are generally preferred activation functions in deep learning models [16]
because of their ability and efficiency to avoid the vanishing gradient problem. Especially
LeakyReLU is similar to ReLU but LeakyReLU solves ReLLU’s dying neuron issue. This
situation allows the use of information-carrying neurons, especially complex datasets. The
epoch number is used as the number of repetitions in the training dataset. The learning rate
determines the speed of the model weights. A small learning rate provides slower reaction
but more qualified learning, while a larger one enables faster but more oscillatory learning.
Loss function is a technique that measures the error between the predicted values and the
actual values. Cross-entropy loss is used for classification tasks, and the this method was
preferred in this study. Data augmentation (standard augmentation) increases data variety by
implementing transformations such as rotation, zoom, and shifting [17]. Normalization is
the process of scaling data. This stabilizes the model and helps it learn more efficiently. An

optimizer function is an algorithm that minimizes loss value for learning.



There are various optimization approaches, such as ADAM (Adaptive Moment Estimation),
Gradient Descent (GD), RMSprop (Root Mean Squared Propagation), Stochastic Gradient
Descent (SGD), and AdaGrad (Adaptive Gradient Algorithm) [18]. Choice of optimizer
depends on the certain preferences and situations [19]. ADAM is a widely used, popular,
and effective optimizer for deep learning applications [20]. Both LeakyReLU and ADAM
are well-suited for deep learning tasks. The most common performance parameters in deep
learning applications are test accuracy, test loss, validation accuracy, validation loss, and F1
score [21,22]. Test accuracy shows the accuracy of the model on the test dataset, meaning
how accurately the model predicts new, unseen data. High test accuracy suggests that the
model performs well on new data. Test loss measures the error rate of the model on the test
dataset. If test loss has a low value, this indicates good generalization. Test loss is also a
metric that calculates difference between predicted values and actual classes, depending on
loss function used. Validation accuracy shows the result of the validation dataset during
training. It helps identify overfitting or underfitting, and validation accuracy is used for
model performance. Overfitting occurs when the model fits the training data, learning noise
and details specific to the training set, and underfitting is the failure of the training data's
underlying patterns. Validation loss is the error rate of the model on the validation dataset.
The F1 score is used to measure the model classification performance. F1 score balances the
accuracy metric, which is especially helpful for imbalanced datasets [23].

Traditional methods for separating liquids typically rely on physical and chemical properties
and are often performed manually in laboratory environments. Techniques such as
distillation, solvent extraction, centrifugation, and filtration are commonly used but tend to
be time-consuming and labor-intensive. In contrast, this study introduces a novel and
contact-free approach that integrates multispectral imaging inspired by SWIR camera
technology with deep learning algorithms for liquid classification. Visually similar
substances such as water, flux, acetone, alcohol, and cologne were selected to challenge
standard RGB imaging, which often fails to distinguish such materials. Multispectral (MS),
SWIR, and RGB images were compared under identical visual conditions using filters in the
1200-1600 nm range to capture MS images. Both binary (2-class) and multiclass (5-class)
classifications were performed, and results were evaluated comparatively. CNN-based deep
learning models such as DenseNet, VGG16, VGG19, ResNet, and Inception were utilized
alongside various optimizers including SGD, RMSProp, Nadam, and Adagrad.

Experimental findings demonstrate that the proposed MS imaging approach, when combined
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with deep learning, yields significantly better classification performance than RGB-based
methods. This study aims to demonstrate that multispectral imaging, when combined with
deep learning, offers a robust and scalable solution for the non-invasive classification of

visually similar liquids, potentially reducing the need for complex laboratory procedures.

Chapter 1 introduces the purpose and scope of the study, highlighting the goal of
distinguishing visually similar substances using multispectral (MS) imaging and deep

learning techniques.

Chapter 2 provides a comprehensive literature review on imaging systems (RGB, SWIR,

MS) and deep learning algorithms.

Chapter 3 details various imaging technologies, focusing on the characteristics and
principles of visible (RGB), infrared (SWIR), and multispectral (MS) systems.

Chapter 4 presents the fundamentals of deep learning, loss functions, neural networks,
optimization algorithms, activation functions, and commonly used architectures such as
DenseNet, VGG16, VGG19, ResNet, and Inception.

Chapter 5 describes the dataset preparation and methodology, including how the data were

collected, preprocessed, and augmented for use in training.

Chapter 6 includes experimental evaluations. Different CNN architectures and optimization
algorithms (Adam, SGD, RMSProp, Nadam, Adagrad) are tested. Binary and multiclass
classification results are compared across RGB, SWIR, and MS modalities, showing that

multispectral imaging yields the best results.

Chapter 7 concludes this study with key findings and proposes directions for future research.



2. LITERATURE OVERVIEW

Multispectral imaging captures image data at certain wavelength bands. Each band captures
distinct information, making this method suitable for applications like agriculture,
environmental monitoring, and medical imaging [24,25]. Multispectral imaging offers
efficient results with lower costs and reduced complexity and provides a more practical
option for operational applications [26]. Infrared imaging systems have their origins in
recent history. Infrared imaging systems encompass the latest technological developments,
and the applications of infrared sensors have become widespread in industrial, medical, and
various imaging fields [27,28,29]. However, SWIR cameras have a slightly broader range
of applications in multispectral imaging due to their effective bandwidth and wide array of
spectral features [1,6]. SWIR cameras operate in the 900—-2500 nm range when capturing a
broader spectrum, covering both the traditional SWIR range (900-1700 nm) and extending
into longer wavelengths. Therefore, SWIR cameras are widely preferred for many
multispectral applications, and imaging performance is further enhanced by combining the
advantages of multispectral and SWIR imaging [4]. Their ability to excel in low-light and
foggy conditions, as well as to detect subtle material differences, makes them indispensable
in fields such as agriculture, material analysis, and environmental monitoring. Combining
multispectral imaging with deep learning applications offers several powerful benefits,
especially in fields requiring complex data analysis and detailed object detection [30].
Multispectral imaging, utilizing SWIR, provides a broader spectral range than standard
visible light, allowing deep learning algorithms to capture subtle details across multiple
SWIR wavelengths [9].

In another study [10], spectral differences between lettuce and weeds were analyzed using
multispectral images. Deep learning models were trained to detect weeds by processing these
images. The paper describes in detail the datasets, model architecture and training methods
used in this process. A deep learning model that automatically detects water bodies using
multispectral satellite images taken at different wavelengths was developed. The model
aimed to distinguish water bodies in images with high accuracy using a convolutional neural
network (CNN) based architectural approach [11]. The use of CNN based architecture is
especially common in deep learning applications.



Deep learning, as a subfield of machine learning, utilizes multi-layered neural networks to
analyze large volumes of data. Deep learning architecture learns features to get high
accuracy in complex missions such as image recognition, speech processing, and language
processing from the collected data [31]. A review of the literature on neural networks
revealed the existence of various architectures with unique features designed for problems
such as image, sound, text, and other data types. In this study, the focus was placed on CNN,
which offer advantages in applications where spatial features are important, such as visual
processing, image classification, and object recognition. CNN architecture was particularly
preferred due to its appropriate structure and widespread use in image processing [32]. The
CNN-based deep learning method produces outputs based on adjustable parameters in its
architecture. Critical elements such as learning rate, epoch, and dropout directly influence
the performance, generalization, and learning process for deep learning models.
Consequently, the model can achieve enhanced performance, improved generalization
ability, greater training efficiency, and effective data utilization [33]. In the literature, deep
learning applications are used for identifying similar objects and detecting changes in images
where the visible spectrum is limited, as well as for multispectral imaging applications. In a
study [34], the separation of objects that are visually very similar, or indistinguishable to the
human eye, using a deep learning method applied to multispectral imaging obtained with
SWIR cameras is discussed. An attempt was made to leverage the bandwidth of the infrared
camera and to separate the materials by incorporating deep learning into this study. This
method facilitates the precise classification of materials through spectral signature analysis

and can be seamlessly integrated with other imaging methods such as RGB or IR.

In the study [35], a deep learning application was conducted to the NIR band on datasets
belonging to 9 different classes. Deep learning models for food detection was examined. The
test accuracy and F1 score output were explained using the Dense-Net model, both with and
without transfer learning. The highest accuracy of 63% was achieved by mixed datasets, but
then 96.46% accuracy was achieved by using multispectral datasets collected at five distinct
wavelengths. With the data augmentation method, the accuracy results increased from 63%
to around 74% and the effect of data augmentation was emphasized. In the conclusion
section, the importance of multispectral imaging, the applicability of deep learning methods
and the conditions affecting performance were mentioned. In [36], a deep learning model
was developed to classify different wound types by using RGB images. The model output

was evaluated by utilizing the cross-validation method. A maximum accuracy rate of 96.4%



and an average accuracy rate of 94.28% were achieved in 2-class classification. For 3-class
classification, the model achieved a maximum accuracy rate of 91.9% and an average
accuracy rate of 87.7%. The test accuracy value was found to be 92.20% for 4-class
classification and 84.94% for 5-class classification. These findings highlight that the model

also performs well on different datasets.

Another study [37] reviewed 170 articles on the deep learning research status. Both
multispectral and hyperspectral images are considered in the article. These images are
combined with the deep learning method and the work in 170 different articles is examined
and the best results are tried for different class numbers and classification types. Satellite
imagery includes satellites such as Landsat 5 and 8, GF-1, Sentinel-1. Most of these satellites
produce multispectral imagery. In particular, Sentinel-2 provides multispectral imagery with
13 different spectral bands. Situation is stated in the article that 90% accuracy was achieved
in the study conducted with Sentinel-2 for 5 different classes based on CNN. In addition,
91.2% accuracy was found for 3 classes. The best results were found as 93.3% using Unet

and ResNet duo for 10 classes.

In the study [38], recognition and classification operations were performed on wheat seed
images obtained using three different imaging techniques. Fusion imaging achieved the
highest accuracy of 92.63% in RGB-SWIR combinations. Additionally, a success rate of
91.13% was reported in tests conducted with the VGG16 model. Within the scope of the
study, recognition and classification studies were carried out on the dataset created from
wheat images obtained from RGB, VNIR, and SWIR imaging techniques. Using SWIR
camera data, an accuracy of 95.31% was obtained. Findings indicate that the fusion
technique may not always be sufficient in deep learning applications. As a potential solution,

the multispectral imaging technique presents a promising new opportunity.

In a study [39] aiming to detect counterfeiting with spectroscopy-based sensors, meat pieces
were mixed in 25% increments to create different levels of counterfeiting mixtures and six
different samples were prepared from each level. They were analyzed using spectroscopy
and multispectral imaging. The good performance of MSI-based models compared to other
sensors was highlighted, with accuracy rates ranging from 87% to 100%. In another article
[40], dataset features and testing techniques affecting the performance of classification

algorithms were examined in detail. In the study, experiments were conducted using 32



different datasets and 9 different classification algorithms commonly used in the literature.
For example, it was shown how effective the physical class change was for the

Biomechanical Properties of Orthopedic Patients class.

In this study utilized deep learning algorithms to analyze five distinct materials. Five
different classes were created, and data for these classes were collected in a laboratory
environment. Datasets were obtained using SWIR cameras and filters of different
wavelengths. Then, these data were processed using deep learning methods, and the results
were recorded. An ideal architecture was determined by analyzing these results. 2-class, and
5-class classifications were examined. Study began with data obtained from RGB, SWIR,
and multispectral images for 5-class classification. The highest 5-class test accuracy of
96.46% was obtained using multispectral imaging, compared to 59.96% with SWIR and
44.16% with RGB. Metrics such as test loss, validation accuracy, F1 score, and validation
loss, which influence the deep learning method, were also examined. In this study, class
differences in 5-class multispectral imaging were also analyzed, and the results were
validated accordingly. A slight increase in test accuracy was observed as the number of

classes was reduced.



3. IMAGING SYSTEMS

In this section, visible, infrared, multispectral, and hyperspectral imaging techniques are
explained. SWIR and multispectral imaging techniques, which are the focus of this study,
will be discussed in detail. Imaging systems are technological tools designed to capture,
analyze, and process visual data from specific objects, areas, or environments. These systems
typically utilize sensors or cameras to detect light or other electromagnetic waves and
convert this information into a digital format for further analysis. In this section, the types
of imaging systems, sensors, and optics are explained. The study also includes an
explanation of the data collection methodology. The Electromagnetic spectrum encompasses
electromagnetic radiation range, categorized by energy, wavelength, and frequency. It
begins with radio waves and ends with gamma rays, encompassing diverse energy levels.

Electromagnetic spectrum is given in Figure 3.1.

900 2500
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Figure 3.1. Electromagnetic spectrum views

There are grey areas in the infrared region represent atmospheric attenuation due to gases,
water vapor and other atmospheric situations. The boundaries in spectral analysis are not
rigidly defined and should be considered flexible. For instance, 1000nm can belong to both
the NIR band and the SWIR band. Likewise, the visible spectrum does not have a sharp
cutoff, and it cannot be definitively said to end at 700nm [38]. The four primary types of
imaging systems are RGB imaging, multispectral imaging, IR imaging, and hyperspectral

imaging.
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3.1. Visible (RGB) Imaging Systems

The RGB imaging method, widely used in daily life, is an imaging technology that operates
within the visible light spectrum. The RGB imaging method captures data from the three
main colors perceivable by the human eye (red, green, blue) and combines these color
channels to create a full-color image. The RGB spectrum spans approximately 400 nm to
700 nm, corresponding to the range perceivable by the human eye. The working principle of
the RGB camera is illustrated in Figure 3.2. An image captured in analog form is converted

into digital format and processed further to produce an output [39,40].

Analog
Digital
Converter

OUTPUT

Processing

Figure 3.2. Fundamentals of RGB camera operation

RGB imaging systems, which is frequently used in our daily lives, offers many advantages
but also has certain limitations. It is limited in its ability to capture wavelengths outside the
visible light spectrum. Therefore, alternative imaging methods are employed to overcome
these limitations.

3.2. Infrared (IR) Imaging Systems

Infrared (IR) imaging systems have a technology designed to detect infrared light and
convert it into an image format. Infrared light, which cannot be seen by human eye, occupies
the region of the electromagnetic spectrum beyond visible light, ranging approximately from
700 nanometers to 12 millimeters. Infrared camera systems are classified into four distinct
bands such as VNIR/NIR (Visible Near Infrared), MWIR (Mid-Wave Infrared), LWIR
(Long-Wave Infrared), and SWIR (Short-Wave Infrared). In this section, the characteristics
of the SWIR band and the technology in SWIR band cameras are detailed.
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3.2.1. Near infrared characteristic and technology

The NIR (Near-Infrared) band which lies within the electromagnetic spectrum ranging
between 700 nm and 1000 nm exists just beyond visible light and before the SWIR (Short-
Wave Infrared) region. Absorption and reflection properties in this band are sensitive for
distinguishing material characteristics. Infrared light penetrates deeper than visible light and

is more effective for environmental conditions.

3.2.2. Short wave infrared characteristic and technology

The SWIR (Short-Wave Infrared) band occupies a region of the electromagnetic spectrum,
ranging approximately from 900 nm to 2500 nm, beyond the NIR (Near-Infrared) region and
before the MWIR (Mid-Wave Infrared) region. Positioned with wavelengths that reflect light
similar to visible light, SWIR provides unique imaging capabilities. Its absorption and
reflection properties are effective for identifying subtle material differences and detecting

parameters like water content, chemical composition, and surface properties.

SWIR is capable of penetrating through atmospheric elements such as haze, smoke, and fog,
making it suitable for challenging environmental conditions. Images captured by SWIR and

visible cameras under foggy weather conditions are presented, as shown in Figure 3.3.

Figure 3.3. Comparison of visible light (left) and SWIR imaging (right) in low-visibility
conditions. The SWIR image demonstrates to penetrate atmospheric
interference [9]

Figure 3.4 illustrates views of an InGaAs (Indium Gallium Arsenide) SWIR camera system.

SWIR imaging method is used in applications for agriculture, surveillance, material analysis,
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security, and industrial due to its ability to detect features beyond the visible and NIR bands.
In this study, multispectral imaging leveraging SWIR technology was applied.

The production of SWIR cameras involves various processes, including ROIC (Read-Out
Integrated Circuit) fabrication, flip-chip bonding, wire bonding, packaging, and electronic

integration [43].

Figure 3.4. Packaged SWIR detector (left) and electronic boards (right) [42]

The ROIC is a key component that reads electrical signals from the photodetector array and
processes them for output. Fabrication involves advanced semiconductor manufacturing
techniques to ensure low noise and high performance in signal readout. Flip-Chip bonding
is a process where the photodetector array is flipped and directly mounted onto the ROIC
using precise alignment. This method minimizes signal loss and improves the electrical
connection between the sensor and the circuit. In cases where flip-chip bonding is not used,
wire bonding connects the sensor and ROIC through ultra-thin wires. It is a reliable and cost-
effective technique for creating electrical connections.

Packaging which may also include the integration of optical filters or windows, depending
on the application is a process of enclosing the SWIR sensor in a protective housing to shield
it from environmental factors like moisture, dust, and mechanical stress. Electronic
Integration involves connecting the SWIR sensor module to additional electronic
components, such as proximity card, analog-to-digital converters (ADC), interface card and

power supply systems, to enable seamless functionality in devices or systems.
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Calibration is the process of ensuring that the sensor operates accurately within its specified
wavelength range and performance parameters. Calibration involves adjusting the sensor's
response to light intensity, wavelength, and other environmental factors to optimize accuracy
and consistency. Calibration for a SWIR camera involves addressing key aspects such as
correcting dead pixels, accounting for the quantum efficiency effect, and ensuring proper

sensor cooling.

Temperature significantly impacts the performance of SWIR cameras in several ways. At
higher temperatures, the dark current in SWIR detectors increases, which can reduce the
Signal to Noise Ratio (SNR). Temperature changes may cause slight shifts in the spectral
response or lead to a degradation in quantum efficiency. Maintaining stable temperature
conditions is therefore important for optimal SWIR camera performance. Figure 3.5.

indicates temperature change of the SWIR camera used in this study over time.

—8— Temperature Over Time (with Fluctuations)
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Figure 3.5. Temperature change over time of the SWIR camera used in this study

3.2.3. Mid wave infrared characteristic and technology

The MWIR (Mid-Wave Infrared) band occupies a region of the electromagnetic spectrum
between 3 um and 5 pm (3000 nm to 5000 nm). MWIR imaging is focusing on thermal
emissions from objects, making it distinct from reflective SWIR imaging and longer
wavelength LWIR thermal imaging. Materials like HgCdTe (MCT) and InSb (Indium
Antimonide), which are used in MWIR detectors, involve more complex and expensive
manufacturing processes. On the other hand, the InGaAs (Indium Gallium Arsenide)

material used in SWIR sensors benefits from more widespread and mature production
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technologies, providing a significant cost advantage. Figure 3.6 presents a visual comparison

of images captured by MWIR and SWIR cameras.

Figure 3.6. Comparison of images. a) MWIR image b) SWIR image [44]

3.2.4. Long wave infrared characteristic and technology

The LWIR (Long Wave Infrared) band covers a wavelength range between 8 um and 12 um
(8000 nm to 12000 nm) in the electromagnetic spectrum. and is primarily associated with
thermal radiation rather than reflected light. LWIR imaging focuses on capturing the heat
naturally emitted by objects, which makes ideal for applications requiring temperature
measurement and thermal imaging, for low-light conditions [45]. In Figure 3.7, images of
different materials captured with an LWIR camera are presented.

419 °F® oF

Figure 3.7. Thermal image captured using an LWIR camera, illustrating temperature
variations across different materials [46]
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3.3. Multispectral Imaging (MS) Systems

Multispectral imaging method captures image data at certain wavelengths. Unlike traditional
cameras that record images in three color channels, multispectral systems utilize multiple
narrow spectral bands, often extending into non-visible regions. These systems are designed
to extract detailed spectral information about objects or scenes, making them highly valuable
for applications requiring precise material or feature differentiation. Multispectral imaging
can be used effectively because it operates at discrete wavelengths within specific intervals
[47]. This enables the differentiation of materials and objects based on their unique spectral
signatures. It is widely applied in agriculture, defense, security, industrial quality control,
remote sensing, and medical diagnostics, where accurate material characterization is critical.
For instance, in agriculture, infrared bands can detect plant stress, water content, or
chlorophyll concentration, which are invisible to the naked eye. Similarly, in material
science, spectral data in non-visible ranges can help distinguish between materials based on
their reflectance properties. Multispectral images of five different materials (water,

propanol, cologne, acetone, flux) used in this thesis are presented in Figure 3.8.

st
v

Figure 3.8. Multispectral images captured at 1200 nm, 1300 nm, 1400 nm and 1500 nm
wavelengths imaging
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Materials exhibit different responses at various wavelengths. These variations in spectral
responses highlight the unique characteristics of each material, which can be leveraged for
precise identification and analysis. This multispectral approach is particularly useful for
distinguishing between materials based on their spectral signatures. A multispectral image
comparison of a plant, as shown in Figure 3.9, demonstrates its utility in analyzing images
captured within the 400 nm to 1000 nm range. Multispectral imaging is not limited to visible
light; it also extends into infrared regions, enhancing its range of applications. By
incorporating wavelengths such as NIR and SWIR, multispectral imaging systems become

invaluable for remote sensing, healthcare diagnostics, and industrial quality control.

Figure 3.9. Comparison of the MS images. a) blue, b) green, c¢) red visible bands, d-f)
infrared bands, g) full-spectrum reflectance, and h) the original image of a plant
[48]

The ability to analyze data across diverse spectral bands makes multispectral imaging
systems versatile tools in science, industry, and beyond. Due to their cost-effectiveness,
faster data acquisition, and ease of integration, we prefer multispectral imaging for
applications where detailed spectral resolution is not critical but efficiency and practicality
are essential [46]. In multispectral imaging, light interacts with materials through reflection,

absorption, and transmission, providing unique spectral signatures for each material.
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Reflection occurs when light bounces off a material's surface, with the amount and type of
reflection depending on the material's properties and the wavelength. Absorption happens
when materials absorb specific wavelengths of light, converting them into energy such as
heat. Transmission means that light passing through a material. Transparent materials like
water or thin films may transmit some visible light while blocking other wavelengths, such
as near-infrared. By analyzing these interactions, multispectral imaging generates unique

spectral signatures that allow for precise material identification [49].

3.4. Hyperspectral Imaging (HS) Systems

Hyperspectral imaging systems capture image data across hundreds of narrow wavelength
bands along the electromagnetic spectrum. Unlike traditional multispectral systems,
hyperspectral systems utilize a much larger number of spectral bands, providing more
comprehensive and detailed information about an object or scene. These systems analyze
the spectral signature of each pixel, enabling highly precise material identification and

feature detection.

Hyperspectral imaging operates in continuous and narrow wavelength ranges, allowing even
the smallest spectral differences between materials and objects to be identified. This makes
it critical in fields such as agriculture, environmental monitoring, defense, medical
diagnostics, and remote sensing. Wide spectral coverage enables precise analysis regardless

of environmental conditions.

Multispectral imaging has several advantages over hyperspectral imaging, particularly in
terms of practicality and cost-efficiency. Another advantage is the faster data acquisition.
Since multispectral imaging involves capturing fewer bands, it operates more quickly,
enabling real-time imaging or faster processing in time-sensitive applications such as
industrial inspections or remote sensing. Portability makes them ideal for fieldwork or

applications requiring lightweight and easy-to-use equipment [50].
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4. LEARNING ARCHITECTURES PERSPECTIVE

In this section, techniques for machine learning and fundamentals of deep learning, which
are part of artificial intelligence, are discussed. Deep learning is subset of machine learning,
like the way humans learn from data. Artificial intelligence (Al) includes machine and deep
learning that excels in analyzing large, complex datasets to identify structures and make
estimations. Deep learning models include multiple layers, known as artificial neurons, that
process data. Each layer learns the specific features from the input data, gradually building
a more abstract understanding as the data moves [48]. In the human brain, neurons
communicate through electrical impulses. Similarly, in artificial neural networks, neurons
are connected by weighted links, and these weights determine how signals are passed and
combined. The conceptual relationship between deep learning and the human brain has been
a guiding principle in the development of neural network architectures. Hierarchical
relationship between Artificial Intelligence, Deep Learning, Machine Learning, and Neural
Networks is shared in Figure 4.1. Deep learning models are composed of multiple hidden
layers [51]. Early layers capture low-level features like edges, middle layers recognize parts

of objects, and deeper layers identify entire objects.

DEEP NEURAL

LEARNING NETWORKS

Figure 4.1. Hierarchical relationship of artificial intelligence and subfields
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4.1. Deep Learning Fundamentals

Deep learning is a machine learning approach that mimics human brain functions through
artificial neural network models. It consists of several fundamental building blocks and
principles. These layers progressively extract higher-level features, making it particularly
effective for complex missions such as language processing, image recognition, and speech
analysis. Artificial neural networks are inspired by biological nerve cells. They are models
developed within this structure and are based on mathematical calculations. An artificial
neural network is basically formed of neurons, layers and weighted connections [18]. The

structure of the artificial neuron is shown in Figure 4.2.

OUTPUT

INPUTS

Figure 4.2. Fundamental artificial neuron model

Each artificial neuron receives input. It multiplies these inputs with certain weights. Because
the relevant neurons contain different information. Then it passes through a summation
function. After the summation function, the total information content obtained is summed
with a bias value [18]. The total information content collected with bias is transmitted to the
activation function. It is ensured that the information to be obtained at the output is consistent
with each other. "X" represents the inputs of the artificial neuron. The parameter indicated
as "W" shows the effect of the inputs on the model. Each input has a different effect. These
inputs are collected together with their effects. The bias value indicated by "b" is transmitted
to the activation function. The information content passed through the activation function is

obtained as output data. Output of a neuron is calculated by the following formula.
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7= Z(Xn «W,) +b (4.1)
k=0

Neural networks are important for deep learning, consisting of layers of connected neurons
that process input data and extract meaningful features. Structure of a neural network is
composed of three main layers which are input, output, and hidden. The input layer is the
first layer of the network, where raw data, such as text, images or signals, is fed into model.
The hidden layers are responsible for feature extraction by applying transformations like

convolutions or non-linear activations to learn complex patterns in the data [61].
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Figure 4.3. Feedforward neural network between layers [52]

The forward propagation equation is used to calculate the output of the neural network by
processing it layer by layer. In this process, the input data is transmitted through the network
and the weighted sum of the inputs is calculated in each layer. A bias term is added to this
sum and the result is passed through an activation function to determine the output of that
layer. This output is transmitted to the next layer.

The process continues through all hidden layers and finally reaches the output layer, creating
the model's prediction. Forward propagation allows the network to make predictions based
on the given input data. Backpropagation is an algorithm used to train artificial neural

networks by minimizing the difference between predicted and actual outputs.



22

HIDDEN

 BACKPROPAGATION

Figure 4.4. Backpropagation neural network between layers

Backpropagation begins with the initialization of weights and biases, which are typically set
to random values in the network. In the next step, a forward pass is performed, and the loss
is calculated using a chosen loss function to measure the difference [66]. In the image, the
arrows represent the forward flow of information (orange) and the back propagation of the

error signal (blue).

4.2. Deep Learning Methods

Deep learning represents a specialized field within machine learning that focuses on training
models with multiple layers to automatically extract features from raw data and make
predictions. This section explains that fundamental concepts of deep learning, providing an
understanding of activation functions, regularization methods, loss functions, optimization
strategies, and the structure of artificial neural networks. These concepts form the foundation

for building and fine-tuning effective deep learning models [60].

4.2.1 Artificial neural networks

Acrtificial Neural Networks (ANNSs) models are inspired by structure of biological neural
networks like human brain. It is a key concept in artificial intelligence, particularly in deep
and machine learning methods, designed to identify patterns and relationships in data to
make decisions or predictions. Neural networks form base of deep learning. Consistency of
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neurons that processes input data and transform it into meaningful representations. Each
neuron applies a mathematical operation, such as a weighted sum of activation function, to
learn features from the data. Structure of ANNSs basically includes input layer, output layer,

and hidden layer.

The input layer receives raw data, where each neuron represents a feature. The hidden layers
process this data, identifying patterns and relationships using weighted sums, biases, and
activation functions, with their number and size impacting performance. The output layer
generates final predictions, with neurons representing classes for classification or continuous
values for regression tasks. The key components of neural networks include neurons, which

are basic computational units that process and transfer data.

Weights (w) and biases (b) are parameters adjusted during training to minimize prediction
errors. Weights determine the impact of each input in predicting the neuron's output and are
learned during the process. The bias is an additional parameter in artificial neural networks,
used to adjust the output along with the weighted sum provided as input to the neuron [18].
Activation functions introduce non-linearity to learn complex relationships. The loss
function parameters of error between the predicted outputs and actual targets, guiding the
training process. Optimization algorithm adjusts weights and biases to minimize the loss
function [18].

Long Short-Term Memory (LSTM)

LSTMs effectively handle the vanishing gradient problem, making them ideal for processing
sequential data over extended periods [71]. Cell state shows the long-term memory of the
network, acting as a pipeline that transfers information across sequential steps while
retaining important data and filtering out irrelevant information [18].

Recurrent Neural Network (RNN)

RNNSs are class of neural networks structured to process ordered data using a hidden state
that accumulates contextual knowledge from previous steps. They are commonly used for

tasks such as time series prediction, speech recognition, and natural language processing.
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Convolutional Neural Networks (CNN)

CNN is a specialized form of artificial neural network designed to process structured data,
particularly images, videos, and other spatially-organized data. CNNs are used in tasks like
image recognition, object detection, and computer vision. CNNs are built on notion of
convolution, which involves applying filters to input data to extract important features such
as edges, textures, and patterns. Features are learned automatically during training, making
CNNs highly effective for processing visual data. Architecture of a CNN typically consists
of several types of layers, including convolutional layers for feature extraction, flatten,
pooling layers for dimensionality reduction, and fully connected layers for making
classifications or predictions [73]. Basic structure of a CNN includes several layers. The
input layer accepts raw data, such as an image represented as matrix of pixel metrics. The
convolutional layer extracts local features from input using filters that sense specific patterns
like edges or textures by sliding over the data. The image classification structure of the CNN

architecture is shown in Figure 4.5.
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Figure 4.5. Architecture of a Convolutional Neural Network for image classification

Activation function applies a non-linear transformation to the feature extraction maps.
Pooling layer decreases spatial dimensions of the feature maps, protecting important features
while lowering computational complexity, using methods like average output and max
pooling. The fully connected layer links all neurons to produce the final output, often used
for predictions such as class probabilities. Output layer generates the network’s predictions,
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with neurons representing target classes or regression outputs [73]. Process begins with an
input image that is passed through convolutional layers to extract features like edges and
textures. Pooling layers follow, reducing dimensions of the activation pattern while
preserving major features and lowering complexity. Max pooling method is shown in the

Figure 4.6.
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Figure 4.6. Max pooling operation for dimensionality reduction

The image illustrates a 2x2 Max Pooling method generally used in CNNSs. In this process,
input feature map is divided into 2x2 partitions, and maximum value from each region is
selected to form a smaller output matrix. This reduces the spatial dimensions, lowers
computation, and helps retain the most important features. The feature maps are then reduced
into a one-dimensional vector and passed into fully connected layers. Flattening is a process
of converting the multi-dimensional feature map into a one-dimensional vector. This step is
essential before feeding the data into fully connected layers for classification. Flattening for

feature map is shared in Figure 4.7.
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Figure 4.7. Flattening a feature map into one-dimensional vector
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Finally, the output layer provides the predictions, assigning the input to a specific class. This
architecture highlights the hierarchical feature extraction and decision-making capabilities
of CNNs. ResNet, VGG16, VGG19, Inception and DenseNet architectures are explored to

evaluate their performance in feature extraction and classification tasks.

e Residual Neural Network (ResNet)

ResNet is designed to improve the output of deep learning models. ResNet addresses
vanishing gradient problem that happens in deep structure. Structure of ResNet includes the
residual block and the deep architecture. Residual block consists of a series of layers,

typically convolutional layers, along with connection for the layers [76].

e Visual Geometry Group (VGG)

VGG19 and VGGL16 are developed by the VGG group [74]. VGG16 includes of 16 weight
layers, including 3 fully connected and 13 convolutional layers, while VGG19 is a deeper

version with 19 weight layers, including 3 fully connected and 16 convolutional layers [77].

e Inception

Inception was designed to improve computational efficiency and enhance performance in
image classification and object detection tasks. Inception architecture is especially known
for its innovative use of modules, which activate network to capture features at multiple

scales within a single layer [78].

e Dense Convolutional Network (DenseNet)

DenseNet was designed to address some of limitations of traditional deep networks, such as
inefficiency in parameter usage and difficulty in training very deep models. It achieves this
through dense connectivity, where each layer is connected to subsequent layers, enhancing
feature reuse and improving gradient flow [79]. The relationship between the dense blocks

and the layers within the DenseNet architecture is shared in Figure 4.8.
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Figure 4.8. DenseNet architecture with dense-blocks and transition layers [79]
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Dense block is the core component of DenseNet, where layers are connected to other layers
in a feed forward structure. Within a dense block, features are concatenated rather than
added, as seen in ResNet, which allows the network to preserve the original features.
Between dense blocks, transition layers are used to reduce size of feature maps by using 1x1
convolutions and average pooling [79]. The growth rate determines how many new features
each layer contributes; a smaller growth rate keeps the model compact, while a larger growth
rate increases its representational power [80]. Design principles and differences outlined in
Table 4.1.

Table 4.1. Feature differences between VGG, Inception, ResNet, and DenseNet
architectures

Feature VGG Inception ResNet DenseNet
Depth Medium Mediumto | Verydeep | Medium to very
deep deep
. Moderate to | Low (fewer than
Parameters High Moderate high ResNet)
Parallel Residual

Connectivity | Sequential | convolutions | connections | Dense connections

Feature

Limited Limited Partial Extensive
Reuse
Gradient Weak Moderate Strong Very strong
Flow
Efficiency Low Moderate to High High

high

DenseNet is highly efficient as it requires fewer parameters than ResNet, VGG, or Inception
while maintaining high accuracy. Its dense connections enable feature reuse across layers,

improving generalization and efficiency.

The dense connectivity also enhances gradient flow during backpropagation, making

DenseNet highly trainable, even for very deep networks.
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4.2.2 Activation functions

Activation functions are essential components and mathematical functions in neural
networks that introduce nonlinearity, allows model to learn complex structures within the
data. Each neuron implements an activation function after computing weighted sum of its
inputs, determining whether the neuron should be activated. SoftMax, Hyperbolic Tangent
(Tanh), Sigmoid, Rectified Linear Unit (ReLU), and Leaky ReLU are among the most

generally used activation functions.

Activation functions identify output of artificial neuron, allowing network to learn nonlinear
relationships and are applied at each layer of neural network. Artificial neural networks form
the basic architectural structure that processes input data and produces output results.
Regularization techniques are used in the training process to reduce the over-learning
problem of the model. Loss functions help reduce errors with the backpropagation algorithm
by evaluating the accuracy of the predictions made by model. Optimization algorithms
improve the prediction performance by updating the weights and bias values of the model.
In the following sections which are given below, detailed information about each of these
components will be provided.

SoftMax

SoftMax function is preferred in output layer for multi-class classification missions. This
method converts raw model outputs into probabilities, ensuring that sum of all probabilities

equals 1. Each probability corresponds to a specific class [62].

e
o(z;) = n
j:

1 €7 (4.2)
a(z;) represents probability assigned to class and z; is the raw score in Eq. 4.2. ¥7_, e”/ is

the sum of exponentials of all logits, which normalizes the probabilities. Graph of SoftMax

function is given at Figure 4.9.
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Figure 4.9. SoftMax activation function graphs [60]
Sigmoid
Sigmoid function is used in neural networks for 2-class classification as an activation

function. Function limits any real-valued input into a range between 0 and 1, making

Sigmoid useful for representing probabilities [63].

(4.3)

f(x) =
() 1+ e7X

Input value is the x and e is base of the algorithm in Eq. 4.3. Outputs are easy to interpret as

probabilities in binary classification. Graph of Sigmoid function is given at Figure 4.10.

1.0
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Figure 4.10. Sigmoid activation function graphs [60]

Rectified Linear Unit (ReLU)

ReLU is an activation function in neural networks application for deep learning models.

ReLU introduces non-linearity for model, enabling model to learn and complexity
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connections in the data. ReLU is computationally simple and effective, making it a popular

choice in modern architectures.

_(x ifx>0
f(x) = {0 ifx <0 (44)

x is input value for the function in Eq. 4.4. If input is positive, output is the input itself. If

input is zero or negative, output is zero [65]. Graph of ReLU function is given at Figure 4.11.

— SiLU 3t /

RolU | /

1t

Figure 4.11. ReL U activation function graphs [60]

Leaky Rectified Linear Unit (Leaky RelLU)

Leaky ReLU is a type of ReLU activation function designed to address its key limitation:
the "dead neuron™ problem. Unlike ReLU, which outputs zero for all negative input values,

Leaky ReL U allows that non-zero gradients for negative inputs.

_(x ifx>0
100 = i ifx<0 (4.5)

ax
x is the input value for the function and « is a positive constant that controls the slope for

negative inputs in Eq. 4.5.

Leaky ReLU is widely used in deep learning tasks, especially in networks where ReLU
struggles with dead neurons [60]. Graph of LReLU function is given at Figure 4.12. Leaky
ReLU is used in neural network architectures and image processing tasks as an activation

function due to its ability to prevent dead neurons, enhance feature extraction.
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— LRelU

Figure 4.12. LReLU activation function graphs [60]
By retaining information from negative inputs, it enables models to process complex patterns
more effectively and achieve better performance, particularly on challenging datasets and

advanced architectures.

Hyperbolic tangent (Tanh)

Tanh function is non-linear solution that limits to input into range between -1 and 1, enabling
useful for applications where outputs need to capture both positive and negative
relationships. Graph of Tanh function is given at Figure 4.13.

eX — g7X
f(X) = tanh(x) = m (46)

e is the base of the logarithm and x being the input value in Eq. 4.6.

1 [ r'___,._.-q——‘

— tanh(x) y * /

tanh'(x), 05F F1

P ecmmmm=aa

Figure 4.13. Tanh activation function graphs [60]
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4.2.3 Regularization approaches

Regularization techniques are methods used in deep and machine learnings to prevent
overfitting on training data. Overfit problem happens when a model performs exceptionally
good for training data but struggles to generalize to unseen data. Regularization reduces
model capacity to memorize the training data, encouraging it to learn general patterns
instead. Regularization techniques contain L1 and L2 Regularizations, Dropout, Early

Stopping and Batch Normalization [60].

L1 reqularization (Lasso)

L1 regularization prevents overfitting and enhance feature selection. Method works by
adding punishment term to the loss function. Method stimulates the model to reduce the

weights of less critical features to zero, effectively performing feature selection [68].
Loss = Original Loss + ?\Z |wl| (4.8)

w is the weights for model and A is the regularization parameter controlling penalty factor.
During optimization, the algorithm minimizes this regularized loss function, which

discourages large weight values.

L2 reqularization (Ridge)

L2 regularization prevents overfitting by adding a punishment term to the loss function.
Penalty is commensurate to the sum of the squared values of the model's weights. Unlike L1
Regularization, which can shrink weights to zero, L2 Regularization reduces their magnitude

without making them exactly zero [60].
Loss = Original Loss + AZ w? (4.9)

w is the weights for model and A is the regularization parameter controlling the penalty
strength. During training, the algorithm minimizes this regularized loss function,

discouraging large weight values and distributing the importance across all features.
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Dropout

Dropout is a regularization method used for deep learning applications to prohibit overfitting
by randomly "dropping out" a part of neurons during training. This forces the network to
learn more strong and generalized representations by preventing it from relying too heavily

on specific neurons [66, 69].

d d
A ropped _ I * 74 (4.10)

z; represents neuron i, and r; is a random binary mask applied with a probability (1—p) and

p is the dropout rate.

Batch normalization

Batch normalization improves the training of neural networks by normalizing the inputs to
each layer. It stabilizes and accelerates the training process by reducing the internal shift,
which refers to changes in the dispersion of inputs to a layer as the model learns for deep

learning algorithms [67,70].

1% 1%
M=BZX1, o’ :EZ(Xi_ W? (4.11)
i=1 i=1

Mean (u) and variance (o?) calculation are shared in Eq. 4.11. Then, the inputs are

normalized for the mean and standard deviation.

Xi — l
02+ €

Xj =

(4.12)

€ is a constant added for numerical balance. The learnable parameters y (scale) and B (shift)

are applied to allow the neurons to learn the optimal distribution of the normalized data.

Vi =y *xi+ (4.13)
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Early stopping

Early stopping is a regularization technique used to prohibit overfitting by observing the
model’s generalization ability using validation data while training progresses. If the
validation loss stops improving or begins to worsen for a specified number of consecutive

epochs, training is stopped.

4.2 .4 Loss functions

A loss function is a mathematical equation to measure difference between the predicted
output of a model and the actual target value. Model training minimizes the loss function,
thereby improving the accuracy and performance of the model. Loss functions have an
important in performance measurement by quantifying how well or poorly a model is

performing [71].

Regression loss functions

Regression loss functions are mathematical equations to measure failure between predicted
output and target value in regression tasks. Regression involves predicting continuous
numerical values, and choice of loss function specification how the model evaluates and

improves its predictions [71].

Regression loss function is detailed under two headings: Mean Squared Error and Mean

Absolute Error.
e Mean Squared Error (MSE)

MSE is used for loss function in regression missions for deep learning algorithms. MSE
provides a quantitative metric to evaluate how well a model's predictions align with the true
outputs [71].

n
1
MSE = HZ(Zi —3)? (4.14)

i=1
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e Mean Absolute Error (MAE)

MAE is used for regression missions to measure average absolute difference between
predicted values. Unlike MSE, MAE treats each errors equally by taking absolute value of
differences [71].

n
1
MAE = HZ |z — % (4.15)
i=1

Classification loss functions

A classification loss function is a mathematical equation used in machine learning
applications to evaluate how well a classification model predicts the correct class labels.
Method quantifies error between the model's predicted probabilities or labels and actual
target labels, guiding the model to improve its performance during training [71]. There are

2 types such as Categorical Cross-Entropy and Binary Cross-Entropy.

e Binary Cross-Entropy (BCE)

BCE, which is Log Loss, is a loss function used for 2-class classifications. BCE measures
variation between the predicted probability and actual binary label for each data point. BCE

is used when the target variable has only two possible probabilities, such as 0 or 1 [71].

n

1
BCELOSS = — = ¥ [z * log(2:) + (1 - 2) * log(1 — 2] (4.16)

i=1

z; is the actual label for the i-th sample and Z; is the predicted probability of the positive

class.

e Categorical Cross-Entropy (CCE)

CCE, known as SoftMax loss, is a loss function used in multi-class classification tasks where

the target output is a single class out of multiple possible classes. CCE calculates difference
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between probability distribution of true label and predicted distribution probability from the
model [71].

n k
CCELOSS = == 3" " 1, log(2,) (4.17)

i=1 j=1

Sl

n is patterns number and k is number of classes. z;,; is true label for j-th class of the i-th
sample and Z;, ; is predicted probability for the j-th class of i-th sample. Suppose a dataset

has three classes, and the true label for a given sample is represented as [0, 1, 0]. The

predicted probabilities for the sample are [0.2, 0.7, 0.1].

CCELOSS = —log(0.7) ~ 0.357 (4.18)

The loss decreases as predicted probability for the true class approaches 1, meaning the

model is making more accurate predictions.

4.2.5 Optimization algorithms

Optimization algorithms are mathematical methods used in machine and deep learning
applications to minimize loss function by calibrating the model's parameters, such as weights
and biases. Training models by finding the set of parameters that result in the predictions for

the given data [18].

Stochastic Gradient Descent (SGD)

SGD is an optimization equation to minimize the loss function by adjusting the model's
parameters iteratively. Unlike traditional GD, which computes gradients using the all
dataset, SGD updates parameters based on a single data sample, making faster and more

stable for large datasets [18].

0= 6 —n=*VL(0O) (4.20)
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0 are the model parameters and n is learning rate. VL(6) is gradient of loss function with

dependent to 8. The gradient is computed using a single randomly selected sample.

Adaptive Gradient (Adagrad)

Adagrad is an optimization designed to adjust the learning metric for parameters based on

magnitude of gradients [18].

n

* Bt
VG + €

Gy = Ge—q + 8¢, 0 =01 — (4.21)

g: is gradient of the parameter at time step t and G, is an accumulated sum of squared
gradients for the parameter. 6, is parameter at time step t and n is initial learning rate. € is a

tiny constant to prohibit division by zero.

Root Mean Square Propagation (RMSProp)

RMSProp is used for addresses issues like exploding or vanishing gradients by adapting the

learning rate for parameter based on the magnitude of gradients [18].

E[g®]c = B*E[g’le—1 + (1 —B) * g, 0y =01 —————=* 8¢ (4.22)

g: is gradient at time step t and {3 is loss rate for the moving average. n is learning rate and

€ is tiny constant to prohibit division by zero.

Nesterov- accelerated Adaptive Moment Estimation (Nadam)

Nadam (Nesterov accelerated Adaptive Moment Estimation) builds upon Adam. This results
in a more responsive adjustment to the gradients, especially in scenarios with rapidly
changing loss surfaces. Nadam often improves convergence speed and generalization
performance compared to Adam by anticipating direction of the gradient more effectively.
Adam combines the strengths of SGD with momentum and RMSProp to provide better



38

performance. Adam adaptively adjusts learning rate for parameters, making it robust and
effective for various tasks.

4.3. Common Artificial Intelligence Terms

This section covers the concepts of the epoch, steps per epoch, batch size, target size, test

and validation accuracies, test and validation losses, overfitting, underfitting, and F1 score.

Epoch

Epoch indicates that number of cycles in deep learning method. Epoch identifies how many
times the model processes the full dataset. Training for multiple epochs allows the model to

learn progressively by updating its weights iteratively [60].

Learning rate

Learning rate controls step size at which a neural network updates its weights during the
training process. This method controls how quickly or slowly a model learns.

Batch size
Batch size is quantity of training samples processed by the model. Small batch sizes can lead
to more generalized learning due to increased gradient variability, while larger batch sizes

offer faster computation but may require more memory [60].

Step Per Epoch (SPE)

SPE define number of batches the model will process during a single epoch. This parameter
directly affects the total number of iterations required to complete one pass over the entire

dataset.

Number of Training Samples (4.23)

SPE =
Batch Size
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Test accuracy

Test accuracy is rate of correctly predicted patterns out of total samples in the test dataset.

Results show that how well model generalizes to unseen data [60].

True Predictions (4.24)

~ Total Test Examples
Test loss
Test loss is evaluation of the model's error on test dataset. A lower test loss generally
indicates better model performance, but this technique must align with other metrics like test

accuracy to ensure proper evaluation [60].

Validation accuracy

Validation accuracy measures performance on validation dataset for the model. It helps track
whether the model is overfitting or underfitting as this provides understandings into how
well model generalizes to unseen data [60].

Validation loss

Validation loss indicates error on the validation dataset. It is a critical metric used to identify
overfitting; when validation loss increases while training loss decreases, model may be

overfitting to training data [60].

F1 score

F1 score is harmonic mean of precision and recall, making balanced evaluation and

imbalanced outputs.

Precision * Recall
F1 = 2 % — (4.25)
Precision + Recall
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F1 score shows that model performance in terms of precision and recall [60]. Precision
calculated proportion true instances out of all predictions made as positive. Recall shows

that predicted positive samples out of positive samples in the dataset.

Overfitting/Underfitting

Overfitting happens when a model learns not only underlying patterns but also noise and
irrelevant patterns. As a result, model performs well on the training data on unseen or
validation data [60]. Underfitting happens when a model is simplistic or lacks the capacity
to learn underlying patterns in the data [60].

Target size

Target size refers to the dimensions (height and width) to which input images are resized.
[60]. This resizing ensures that all input images have a consistent shape, making them

compatible with neural network architecture.
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5. AUGMENTED DATA AND METHODS

Data Augmentation is a common technique used for artificially increase the dataset in
machine learning and deep learning projects. It is used to increase the generalization ability
of the model during training and to prevent overfitting. Image data augmentation is a
standard method used to provide more successful results for models trained with a limited
number of images. This record is created by artificially applying various transformations on
existing data. Thus, the model is made more robust to different conditions and has a higher
generalization ability. The most commonly used image verification methods are given

below.

e Rotation: The image is viewed from certain angles and data is created from different
perspectives.

e Flipping: The image can be mirrored vertically or vertically. Vertical reflection
(horizontal translation) is especially used very often.

e Cropping & Scaling: Cropping is used in training by cutting a certain part of the image.
This method allows the model to learn different regions of the object. The size data of the
image is resized, but the original proportions are preserved.

e Shifting: The image is shifted a certain amount on the horizontal or vertical axis.

Various data augmentation techniques such as flipping, scaling, rotation, cropping, and
shifting were applied to increase the diversity of the training dataset in this study. These
transformations were performed randomly to ensure that each image underwent a unique
and unpredictable modification during training. By applying these augmentations in a
stochastic manner, the model was exposed to a wide range of variations in image orientation,
size, and position. This approach allowed the model to better generalize by preventing it
from memorizing specific patterns and helped it to become more robust when encountering
previously unseen data. The random application of these techniques also simulates natural
variations that may occur in real-world scenarios, further enhancing the model’s
adaptability. Prior to data augmentation, the dataset consisted of 100 images per class,
totaling 500 images, all collected under controlled laboratory conditions. To improve model
performance and increase generalization capability, data augmentation were applied
individually to each imaging modality (RGB, SWIR, and MS). This process resulted in
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larger datasets across different configurations: SET2, SET3, and SET4, with the number of

samples per class progressively increasing in each set.

Table 5.1. Amount of augmented for MS, SWIR, RGB classes

Classes _ S_ETl _SET2 $ET3 SET4
(Original Data) | (Light Aug.) | (Medium Aug.) | (Heavy Aug.)
Alcohol 100 170 240 310
Acetone 100 170 240 310
Flux 100 170 240 310
Water 100 170 240 310
Cologne 100 170 240 310
TOTAL 500 850 1200 1550

The base dataset (SET1) consisted of 100 original images per class. For the augmented sets
(SET2 to SET4), various augmentation techniques such as flipping, rotation, shifting,
zooming, and shearing were applied randomly and independently to each image in the RGB,
SWIR, and MS datasets. This ensured the creation of diverse and balanced datasets across
all imaging modalities. For multispectral (MS) imaging specifically, each class included five
spectral bands, with 20 original images per band, totaling 100 images per class. Figure 5.1.
illustrates the data distribution strategy applied to RGB, SWIR, and multispectral imaging
datasets.

RGB

MULTISPECTRAL

Original Training Dataset Original Training Dataset

1200nm 1300nm 1400nm 1500nm 1600nm

ldd

14 Data 14 Data 14 Data 14 Data 14 Data

70 Data

20 Validation Data

_’ 20 Validation Data

10 Test Data

’ 10 Test Data Original Training Dataset

&

70 Data

’ 20 Validation Data

j 10 Test Data

Figure 5.1. Distribution of original datasets for RGB, SWIR, and MS Imaging
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During augmentation, transformations were applied individually to each spectral band image
to preserve spectral integrity while increasing data variety. Consequently, the number of
images grew proportionally across all bands in the MS modality. Moreover, the
augmentation intensity was progressively increased in parallel with dataset size. For
example, the rotation range was set to 30° in SET2, 40° in SET3, and 50° in SET4. Similar
incremental adjustments were made for shifting, shearing, and zooming. This strategy
enabled the model to learn from a broader set of variations, improved its generalization
ability, and helped mitigate overfitting. For each imaging modality, the original dataset was
divided into three subsets such as 10% for testing, 20% for validation, and 70% for training.
In the case of multispectral data, the training set includes images captured at five distinct
wavelengths (1200nm to 1600nm), with 14 images per band. This standardized partitioning
approach ensures consistent evaluation and supports robust model development across
different imaging types. Experimental evaluations conducted using the DenseNet
architecture demonstrated that data augmentation significantly enhanced classification
accuracy across all imaging modalities. Among the tested configurations, SET3 yielded the
highest accuracy, particularly in the multispectral (MS) modality. These findings highlight
the effectiveness of multispectral imaging in differentiating visually similar liquid samples
and underscore the importance of both dataset diversity and augmentation intensity in
developing robust deep learning models. The performance improvements were especially
notable in scenarios with limited real-world data. Data augmentation parameters are shown
in Table 5.2.

Table 5.2. Data augmentation methods and parameters

Augmentation Method Applied Minimum Value
Rotation Range 30

Rescale 1./255

Width & Height Shift Range | 0.3

Shear & Zoom Range 0.4

Horizontal Flip True

The image under shows examples of data augmentation applied to liquid samples. Various
transformations such as rotation, scaling, shifting, zooming, shearing, and horizontal
flipping were used to simulate different imaging conditions. Data augmentation methods,
including controlled geometric transformations, were applied to expand the training dataset.

Each image was altered randomly using predefined parameters to improve the model’s
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learning capabilities. Data augmentation is a powerful technique to enhance model
generalization; however, excessive or unrealistic augmentation may introduce noise and
distort the true characteristics of the data, potentially leading to decreased model
performance. Therefore, augmentation must be applied in a balanced and controlled manner.
In this study, the size of the validation and test datasets was relatively limited, with a total
of 50 test samples for each imaging method. This increases the sensitivity of performance
metrics to individual misclassifications. For example, a single incorrect prediction in a test
set of 50 samples leads to a 2% decrease in accuracy. Consequently, variations in evaluation
metrics are more pronounced and should be interpreted with caution, considering the

constraints of the dataset size.

Figure 5.2. Visual appearance of augmented test liquid data examples
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6. EXPERIMENTAL EVALUATIONS

In this section, the process of collecting data during the thesis study and the evaluation of
the developed architecture are detailed. The methodology used for acquiring Short-Wave
Infrared (SWIR) and Multispectral (MS) images is outlined, and the preferred deep learning
architecture is validated through obtained results. Various artificial neural network
architectures were examined, and the one yielding the most optimal results was selected as
the reference model. In this context, emphasis is placed on the CNN architecture, which is
widely recognized and utilized in image and video processing. The workflow diagram is

presented in Figure 6.1.

Standardized imaging setup with Preparation of
controlled lighting and positioning. Experiment

Y

RGB, SWIR, and MS images captured Collecting the
under identical conditions. dataset

DenseNet
VGG16
VGG19
ResNet

* Inception

A |

Building the
CNN model

PIINgaY

Training

'

Fine Tune

Validation

Evaluation Performance metrics on validation set

Performed only after the model shows

Test ; . "
satisfactory validation performance.

Figure 6.1. Workflow for processing deep learning methods on experimental setup

According to the diagram, the tests began with the preparation of the image acquisition
mechanism in the laboratory environment and proceeded with the acquisition of datasets for
RGB, SWIR, and Multispectral (MS) images. RGB images were captured for materials that
are visually similar and cannot be distinguished through simple observation, such as
propanol, cologne, water, acetone, and flux. Following this, SWIR images were captured,

and MS images were obtained using a SWIR camera with five different filters having cut-
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off frequencies of 1600 nm, 1500 nm, 1400 nm, 1300 nm, and 1200 nm. After completing
the data collection process, deep learning architectures were explored. Since the goal was to
achieve separation among the five classes using a deep learning approach, CNN architecture,
which is widely used and suitable for this purpose, was chosen. Experiments with other
architectures were also conducted, and the best results were obtained with CNN. Tests were
conducted for binary classification and 5-class classification. Metrics; test accuracy,
validation accuracy, test loss, validation loss, and F1 scores were recorded and analyzed.
The importance of IR camera calibrations has been mentioned in previous topics. Now, the

SWIR camera configuration used for Multispectral imaging will be explained.
6.1. Data Acquisition
In this thesis, RGB, SWIR, and MS images were collected from five different liquids

selected to facilitate material detection. These liquids were chosen because they cannot be

distinguished by either the naked eye or an RGB camera. An image of the liquids captured

with an RGB camera is presented in Figure 6.2.

Figure 6.2. Visual appearance of selected test liquids in RGB

RGB images of five different materials were captured in a controlled chamber. Similarly,
images of the same materials were taken using a SWIR camera. These images are presented
in Figure 6.3.
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Figure 6.3. Comparison of the SWIR test images

Multispectral images of the materials were captured under consistent environmental
conditions using filters with cut-off frequencies of 1.6 um, 1.5 um, 1.4 um, 1.3 um, and 1.2
um. Sample of acquired multispectral (MS) images belonging to alcohol is presented in

Figure 6.4.
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- . .
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o . . . . .

Figure 6.4. Multispectral test images at different wavelengths

These multispectral images highlight the spectral differences of the materials across various
wavelengths, enabling detailed analysis of their unique properties. This approach is
particularly useful for distinguishing materials that appear identical in traditional RGB
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images and SWIR images. For each class, separate training, validation, and test folders were
created. Within these folders, five subfolders corresponding to the five different materials
were organized, and the collected data was stored accordingly. Each material, regardless of

the imaging method, includes 100 images.

6.1.1. Environment variables

Environmental effects such as angle and lighting were carefully controlled to ensure
consistency. A fixed backlight was left inside the black box. This fixed light source was used
in all imaging methods. The camera angles were adjusted to be perpendicular to the data
used in RGB, SWIR and MS imaging methods. The appearance of the test set in the
laboratory environment, along with the RGB, SWIR, and multispectral imaging setups used

during dataset acquisition, is presented in Figure 6.5.

(b) VISIBLE ENVIRONMENT

{—]

Visible Camera

SWIR ENVIRONMENT
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Host PC
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\Wi\r

Host PC SWIR Camera + Lens +Filters

Figure 6.5. Experimental test setup and environments. a) test setup b) RGB, SWIR, and MS
imaging environments

The ambient temperature is approximately 25 degrees Celsius as it is a laboratory
environment. The ambient temperature is approximately 25 degrees Celsius since it is a
laboratory environment. Temperature change is important for the calibration of cameras.
Especially for SWIR cameras, temperature change is more important because it affects the

calibration status. In RGB imaging, an RGB camera was used with backlighting in a black
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box. After the SWIR camera was fixed, data was collected using a lens with transparent
glass. In the MS imaging method, the same structure was not disrupted, and images were
taken by fixing filters with cut-off frequencies of 1200nm, 1300nm, 1400nm, 1500nm and

1600nm in front of the lens.

6.1.2. Input standardization

In order to achieve the objectives of this thesis, two different camera types—RGB and
SWIR—were used. The data collected from these cameras were utilized within the deep
learning architecture. To minimize the effects of variable differences, the characteristics of
the acquired data were standardized as much as possible. In this context, resolution and bit
depth were carefully considered and are explained in this section. A consistent input size
provides a significant advantage for architectures such as convolutional neural networks.
Therefore, the resolution for both camera types was set to 640x512 pixels, with 640 pixels
in width and 512 pixels in height. Adjusting for bit depth is essential for effective feature
extraction. RGB images include of three main color channels such as red, green, blue, and

each with 8-bit depth, resulting in a total of 24 bits per pixel.

Table 6.1. Technical specification comparison of different imaging modes

Specification RGB Image SWIR Image MS Image
Format PNG PNG PNG
Width 640 640 640
Height 512 512 512
Mode RGB L - Grayscale L - Grayscale

(Color Depth) 3 channels 1 channel 1 channel

Minimum R:0
Pixel VValue G 0 0 (Black) 0 (Black)
B:0
Maximum R: 255
) G: 255 255 (White) 255 (White)
Pixel Value )
B: 255
Transformation RGB data Pseudo-RGB data | Pseudo-RGB data
Method

On the other hand, SWIR cameras, which were used for both SWIR and multispectral (MS)
imaging in this study, produce single-channel outputs in float32 format with a 32-bit depth.

Importantly, the SWIR camera used in this study provided output data in a normalized
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format, with pixel values already scaled between 0 and 1. This ensured compatibility across
different imaging modalities and supported stable and efficient model training. Due to the
bit depth difference, each pixel value was converted from the range of 0-255 to the range of
0-1. This process allows the model to learn more stably and quickly because standardized
inputs are used. The dataset was partitioned into 10% for testing, 20% for validation, and
70% for training. Distribution was chosen to allow sufficient data for model training while
maintaining separate subsets for hyperparameter tuning and unbiased performance
evaluation. The 70-20-10 split was chosen to ensure that the model is trained on a sufficiently
large portion of the data (70%), while reserving adequate and balanced portions for
validation (20%) and testing (10%). This distribution helps achieve a good trade-off between
learning capacity and reliable performance assessment. A smaller training share might limit
the model’s ability to generalize, especially when the dataset is not very large. SWIR and
MS images, originally single-channel grayscale, were transformed into pseudo-RGB format
by duplicating the grayscale values across the three-color channels to ensure compatibility
with CNN models expecting RGB input. The relevant conversion is shown in the table

below.

Table 6.2. Pseudo-RGB conversion of SWIR and MS data

Original Grayscale Red Channel Green Channel Blue Channel
0 (Black) 0 0 0
128 (Gray) 128 128 128
255 (White) 255 255 255

SWIR and MS images contain spectral information beyond the visible range, offering richer
content compared to standard RGB data. In this study, single-channel SWIR and MS images
were transformed into pseudo-RGB format by replicating the same grayscale information
across all three channels to ensure compatibility with convolutional neural network
architectures. This conversion process does not result in any loss of information, as it serves
only to achieve structural compatibility. In contrast, converting RGB data into SWIR or MS
format would require artificially estimating spectral components that are inherently absent
in RGB images. Such estimations may introduce significant information loss and degrade
classification performance. Therefore, the chosen direction of conversion in this study
provides a more accurate and reliable approach by preserving the integrity of the original
data while ensuring compatibility with deep learning models.
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In order to ensure compatibility of single-channel images with deep learning models, each
pixel's intensity value is replicated across the red, green, and blue channels to create a
pseudo-RGB representation. This process is commonly referred to in the literature as
“channel replication” or “grayscale-t0-RGB conversion.” The method does not alter the
underlying image content; instead, it restructures the data format to meet the input
requirements of convolutional neural networks that are typically designed for three-channel
(RGB) inputs. As a result, grayscale data can be effectively utilized in RGB-based deep

learning architectures without loss of information.

6.2. Architecture Selection

Selection of the deep learning architecture and application, primary focus was placed on
CNN architectures. During the development of these architectures, experiments were
conducted on the main model and activation functions. The results were compared, and the
architectural structure that yielded the best performance was selected as the criterion. After
selecting the ideal architecture, the underlying architecture was applied to RGB, SWIR and

MS imaging methods and the differences were examined.

6.2.1. Model decision

Architectural experiments were carried out using five different classes of multispectral
images. When constructing the CNN model, various activation functions can be used, each
with its own advantages depending on the learning dynamics of the data. For the output
layer, the SoftMax activation function was selected, as it is well-suited for multi-class
classification by generating a probability distribution over the possible classes. In this study,
input images are processed through pretrained CNN architectures. Extracted features are
forwarded to fully connected layers, and the SoftMax classifier determines the most probable
class. In one example, the model successfully classified the input as “Alcohol.” Several well-
established CNN architectures were explored to enhance classification performance. VGG16
and VGG19 offer a straightforward, deep structure with stacked 3x3 convolutional filters.
While easy to implement, these models require a significant number of parameters and are
computationally demanding. ResNet, on the other hand, introduces residual connections,

which help preserve gradient flow and allow training of very deep networks by learning
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identity mappings. This technique addresses the vanishing gradient issue and supports the

development of highly expressive models.

DenseNet adopts a different strategy by creating direct connections from each layer to each
subsequent layers. This dense connectivity leads to efficient feature reuse, improved gradient
propagation, and often better generalization with fewer parameters. Inception, also known
as GoogLeNet, takes a modular approach by applying different types of convolution filters
in parallel. This allows the model to analyze visual features at multiple spatial scales,
offering a balance between computational cost and accuracy. Each of these architectures
brings unique strengths, and the selection depends on factors such as task complexity, dataset
size, and available hardware resources. The full classification pipeline, including feature

extraction and prediction steps, is illustrated in Figure 6.6.

Input Image CNN Models Prediction Class

VGG16

VGG19

| — DenseNet Er 2

Cologne
-,
Water

Figure 6.6. Class prediction evaluation of input image

In deep learning, activation functions and optimization algorithms serve fundamentally
different roles, both of which are essential for the learning process. Activation functions are
implemented to the output of each neuron in a neural network to introduce non-linearity.
Without them, the network would behave like a simple linear model, regardless of how many
layers it has. These functions help the network learn complex patterns by transforming the

weighted sum of inputs into a non-linear output. General activation functions include ReL U,
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Leaky ReL U, Sigmoid, SoftMax, and Tanh. Each function has its own characteristics and is
chosen based on the layer's purpose within the network. On the other hand, optimization
algorithms, often referred to as “optimizers,” are responsible for updating the model's
weights during training. They work by minimizing the loss function using gradients
calculated through backpropagation. Optimizers determine how quickly and effectively the
model learns from the data. Popular examples include SGD, Adam, RMSprop, Nadam, and
Adagrad. These algorithms adjust parameters such as learning rates and momentum to

ensure faster convergence and better accuracy.

While activation functions influence how the network processes information at each layer,
optimization algorithms guide the network in improving its performance over time. Both are
crucial: activation functions define how neurons activate, while optimizers drive the learning
process by fine-tuning the model’s weights. Understanding and selecting the appropriate
activation function and optimizer combination is key to building a well-performing neural
network.Different combinations of activation functions were tested. Results obtained using
LeakyReL U with Adam, SGD, RMSProp, Nadam, and Adagrad optimizers were compared
for the 5-class classification. The results are shared in Table 6.2.

Table 6.2. Activation function combinations and performance comparison for 5-class MS
SET3 imaging classification

Combination/Results Test Validation Test Loss | Validation
Accuracy (%) | Accuracy (%) Loss
LeakyReLU — Nadam 96.46 89.09 0.36 0.87
LeakyRelLU — SGD 15.99 17.59 2.32 2.17
LeakyReLU — RMSProp 85.33 69.01 0.64 0.97
LeakyRelL U — Adagrad 34.66 20.80 2.02 2.17

The Nadam optimizer, when combined with the LeakyReLU activation function, produced
the most successful outcomes in this study. It delivered the highest accuracy and the lowest
loss values across both test and validation sets. In particular, Nadam reached a test accuracy
of 96.46% and a validation accuracy of 89.09%, outperforming other tested optimizers in
terms of stability and generalization capability. Although RMSProp yielded reasonable
performance with a test accuracy of 85.33%, its validation accuracy dropped to 69%,
suggesting that its generalization ability was more limited. In contrast, both SGD and
Adagrad resulted in considerably lower accuracy and higher loss values. Among them, SGD

showed the weakest results, with a test accuracy of only 15.99%, indicating its unsuitability
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for this classification task. Compared to Adam, which also showed promising performance
in earlier experiments, Nadam slightly surpassed it in validation accuracy. This confirms
Nadam as the most reliable optimizer tested in this context. The LeakyReLU—-Nadam pairing
proved to be the most effective setup, offering a strong balance between learning efficiency

and generalization.

Various well-known CNN architectures, including VGG16, VGG19, ResNet, Inception, and
DenseNet, were integrated within the model’s design. In particular, DenseNet, Inception,
and VGG networks are widely acknowledged for their effectiveness in image classification
and feature extraction tasks. The evaluation results of these architectural configurations,
applied to a five-class classification scenario using the MS-SET3 dataset, are summarized
in Table 6.3.

Table 6.3. MS-SET3 results of different functions for 5-class classification

Hidden _ il Model Jest Test palidatieg Validation | F1
Layer Optimizer Desian Accuracy Phss Accuracy L 0SS Score
Function g (%) (%)

LeakyReLu | Nadam VGG16 9438 | 0.51 87.40 0.79 92.12
LeakyReLu | Nadam VGG19 94.82 | 0.50 88.26 0.76 93.00
LeakyReLu | Nadam | DenseNet | 96.46 | 0.36 89.09 0.87 92.24
LeakyReLu | Nadam ResNet 38.66 | 1.45 25.86 1.56 37.41
LeakyReLu | Nadam | Inception 94.73 | 0.49 83.46 0.51 93.38

“Test Accuracy” shows that percentage of true predictions made by model on the test dataset.
Higher results are preferred but overfit problem should be observed. If the algorithm overfits,
early stopping can be applied. “Test Loss” is the error of calculated test dataset and lower

values indicate a model that performs better on new data.

“Validation Accuracy” measures the percentage of true predictions on the real world which
means that model’s performance on data it has not seen before. “Validation Loss” is the error
calculated on the validation dataset during training. F1 score considers both precision and
recall, indicating how well the model balances between making correct predictions. General

model parameters are shown in Table 6.4.
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Table 6.4. General model parameter details for MS, SWIR, RGB classifications

GENERAL MODEL PARAMETERS
Model LeakyRelL U
Architectural Function DenseNet
Activation Function (Output) | SoftMax
Loss Function Categorical Cross-Entropy
Normalization Batch Normalization
Optimization Nadam
Dropout 0.5
Input Shape 224 * 224
Learning Rate le-4
L1 & L2 Regularization Yes
Flatten Yes

The table outlines the model parameters selected for classifying image data obtained through
multispectral (MS), short-wave infrared (SWIR), and RGB imaging techniques. The overall
architecture is built on the DenseNet framework, which employs dense layer connectivity to
strengthen feature transmission and mitigate gradient vanishing issues. LeakyRelLU was
chosen for the hidden layers to support effective information flow, while SoftMax function
was implemented in the output layer to enable multi-class decision making. In order to
enhance the model’s ability to generalize and reduce overfitting, various regularization
strategies were integrated, including dropout, combined L1 and L2 penalties, and batch
normalization. The optimization process relied on the Nadam algorithm which contributed
to stable and efficient training. The input dimensions for the model were fixed at 224 x 224
pixels. Before feeding into the fully connected layers, a flattening operation was performed
to convert the extracted spatial features into a suitable vector format. These configuration
choices were made to ensure strong and consistent performance across different imaging
types. Furthermore, the impact of this deep learning-based approach was examined with
respect to each imaging modality. Experimental results, as presented in Table 6.5, highlight
the effectiveness of the model, especially in the multispectral domain.

Table 6.5. Comparison of MS, SWIR, and RGB results without data augmentation

Class | Imaging | Test Accuracy | Test Validation | Validation F1

SET | Method (%) Loss | Accuracy (%) Loss Score
SET1 | RGB 17.52 3.64 21.19 9.82 24.41
SET1 | SWIR 38.21 1.82 28.72 2.98 40.26

SET1 MS 94.23 0.42 85.76 0.83 86.68
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The table presents the classification results for SET1, which was evaluated without applying
any data augmentation techniques. Among the imaging methods, MS (Multispectral) shows
significantly better performance in both test and validation metrics, with a test accuracy of
94.23%, validation accuracy of 85.76% and an F1 score of 86.68%. In contrast, RGB and
SWIR methods exhibit much lower performance, especially in validation accuracy and F1
scores. These results highlight the advantage of MS imaging in distinguishing between the
classes when no data augmentation is applied. The results of the images reproduced by

applying the data augmentation technique are shared in Table 6.6.

Table 6.6. Augmented MS, SWIR and RGB data for 5-class classification

Class | Imaging | Test Accuracy | Test Validation | Validation F1

SET | Method (%) Loss | Accuracy (%) Loss Score
SET2 | RGB 22.36 2.98 22.98 8.62 30.26
SET2 | SWIR 40.58 1.76 28.93 2.95 40.36
SET2 MS 95.68 0.42 86.20 0.99 88.15
SET3 | RGB 34.16 2.11 23.72 8.16 35.70
SET3 | SWIR 48.96 1.69 31.62 2.93 45.89
SET3 MS 96.46 0.36 89.09 0.87 92.24
SET4 | RGB 27.37 1.89 31.19 8.21 29.36
SET4 | SWIR 45.99 1.74 35.87 2.37 46.44
SET4 MS 93.96 0.46 87.12 0.79 88.15

The findings indicated that SWIR imaging alone did not yield sufficiently high classification
accuracy, likely due to limited spectral resolution. In contrast, multispectral (MS) imaging
offered a more detailed spectral representation, enabling the network to distinguish between
materials that appear nearly identical in conventional image data. Through the use of MS
filters capturing responses at distinct wavelengths, even subtle spectral differences became
apparent, significantly enhancing classification performance. The overall structure and layer
distribution of the proposed CNN model are presented in Figure 6.7. The CNN architecture
used in this study was designed to classify five different liquid classes; hence, the output
layer includes five neurons. Each input image of size 224x224 is passed through a
DenseNet121-based architecture, resulting in a 7x7 output feature map before reaching the
final dense layers. The fully connected layers include 256 neurons, and Leaky RelU

activation function is applied to enhance non-linearity and information flow.
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flatten (Flatten)

dense (Dense)

dropout (Dropout)

dense_1 (Dense)

Figure 6.7. Layer structure and parameters of the DenseNet based model

Backbone of the model, DenseNet121, consists of 121 layers and employs dense
connectivity, allowing each layer to receive feature maps from all preceding layers. This
structure improves feature distribution and reduces the vanishing gradient problem. For
evaluation, a model inference approach was applied based on the pre-trained weights of
DenseNet121, fine-tuned to the dataset.

In a study [34], to further investigate the spectral contributions of individual bands in the
multispectral imaging setup, a series of experiments were conducted. In these experiments,
the model was trained using data augmented from a single spectral band at a time. Each
“band” corresponds to a specific wavelength region, capturing distinct spectral features. The
results demonstrate that Band 4, Band 14, and Band 17 achieved the highest classification
performance among all bands. For example, Band 4 yielded an F1 score of 0.80, while Band
14 and Band 17 reached 0.81 and 0.82, respectively. These results indicate that certain
wavelengths carry more discriminative information, playing a key role in distinguishing

visually similar liquid materials.

In another article [39] examines the effectiveness of visible and multispectral imaging (MSI)
techniques in identifying varying levels of meat adulteration, particularly in mixtures
containing pork and chicken. The experiments were conducted on both fresh and frozen-
thawed samples, with classification accuracy evaluated across different mixing ratios. The
results demonstrate that the visible imaging system exhibited performance limitations, with
the lowest classification accuracy recorded as 58.33%. In contrast, the MSI approach showed
significantly higher robustness, achieving a minimum accuracy of 87.50% and, in many

cases, delivering near-perfect classification outcomes. This performance difference
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highlights the superior capability of MSI in capturing spectral features that are not

discernible in the visible spectrum.

Building upon this insight, the final model configuration using LeakyReL U activation and
the Nadam optimizer achieved a test accuracy of 96.46% and an F1 score of 92.24% in this
study. These results confirm that multispectral imaging, particularly when enhanced by well-
selected spectral bands and a robust CNN architecture like DenseNetl21. An inverse
relationship is observed between the number of classes and test accuracy according to Table
6.7. and decreasing from 92.20% to 68.69% as the class count increases from 4 to 6. This
decline in accuracy highlights the increasing complexity of multiclass classification tasks,
especially when visually similar classes are involved. The use of multispectral (MS) imaging
in our research significantly mitigated this issue. The MS modality achieved the highest test
accuracy of 96.46%, even with five classes, which is notably higher than those reported in

the ensemble CNN-based wound classification study.

Table 6.7. Test accuracies in different multiclass classification scenarios

Test
Accuracy
(%)

Work Material Num of Classes
Classes

BURN GRANULATING

Ref. [35]

Solid
(Injuries)

5-class

NECROTIC
DEBRIDED
SLOUGH

SURGICAL WOUND

84.94

This study

Liquid

5-class

ALCOHOL
ACETONE
FLUX
COLOGNE
WATER

96.46

Ref. [39]

Solid
(Meat)

3-class

BEEF
MIXED
MUTTON

93.33

The reported test accuracy for this method is 84.94%. In contrast, the second study focuses
on the classification of visually similar liquid substances, namely alcohol, acetone, flux,
cologne, and water. Utilizing an ensemble deep CNN-based classification approach, this
study achieved a test accuracy of 96.46%. These results show that the examined method in

the current study outperforms the earlier work, despite the challenge posed by the visual
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similarity of the liquid classes. The high classification accuracy indicates the model's strong
discriminative capability and its potential effectiveness in similar multi-class classification

tasks.

6.2.2. Classification metrics

The distribution in the number of classes was tried to be kept equal. Ensuring equality in the
distribution of data between classes is important for the performance of machine and deep
learning models. An imbalance in the classes in the dataset may cause model to perform
poorly in terms of the amount of data in the class. According to these results, the accuracy
rates within each class were compared, except for the general accuracy result. Since these
results show the rate at which each class is matched, accuracy values are taken as reference.
The low margin between them shows that the matching is done properly and correctly.
Confusion matrix is evaluated within the scope of 2-class classification because confusion
matrix is a tool that visualizes the performance of a classification model by analyzing the
predicted labels with the target labels. Therefore, Figure 6.8. and Figure 6.9. present the
confusion matrices generated for the MS-SET1 (without data augmentation) and MS-SET3

(with data augmentation) test and validation datasets.

MS-SET1 Test Confusion Matrix MS-SET1 Validation Confusion Matrix

10.00
0 0 2 0
8.75

7.50

200

Alcohol
Alcohol

17.5

15.0

Acetone
I
o
Acetone

" 6.25 -12.5

~5.00 -10.0

True Labels
Flux
I
(=]
True Labels
Flux

-75

Cologne
o
Cologne

~2.50 -5.0

“1.25 -25

Water
'
o
Water

- 0.00 -0.0

Acetone Flux Cologne Water

Predicted Labels

A\CUHDI

| | |
Acetone Flux Cologne Water

Predicted Labels

Alcohol

Figure 6.8. Confusion matrix for MS-SET1 test and validation datasets

The information content of the classes for MS-SET1 is detailed in the table below.
Accordingly, "Test Precision”, "Validation Precision", "Test Recall", "Validation Recall",

"Test F1 Score", and "Validation F1 Score™ are calculated separately for each class. These
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metrics allow for a more detailed estimation of model's output on a per-class basis, beyond
overall accuracy. The differences between test and validation scores also provide findings
on the model’s generalization capability and potential class-specific learning challenges. The
values presented in the table are calculated based on the corresponding confusion matrices
and then rounded for clarity. Decimal values were not explicitly written; instead,

approximate figures were shared to enhance readability and facilitate interpretation.

Table 6.8. Classification performance metrics for MS-SET1 confusion matrix

Test Test | Test F1 | Validation | Validation | Validation

Classes | Precision | Recall Score Precision Recall F1 Score
(%) (%) (%) (%) (%) (%)
Alcohol 100 80 88 87 70 77
Acetone 100 90 94 84 80 82
Flux 88 80 84 66 70 68
Cologne 53 70 60 68 75 71
Water 72 80 76 59 65 61

When comparing these results, it is evident that although overall classification performance
improved with data augmentation, the misclassifications tend to occur in similar classes
across both datasets. This indicates that the remaining classification errors are likely due to
inherent visual similarities between certain classes rather than insufficient training data. As
a result, even after augmentation, the model continues to confuse visually similar samples,
such as cologne and water, highlighting the challenge of inter-class similarity in spectral

image classification.
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Figure 6.9. Confusion matrix for MS-SETS3 test and validation datasets
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The figure displays confusion matrices for the validation and test sets of a classification
model. The validation confusion matrix (right) shows that the model performs well overall,
but still presents several misclassifications, particularly between a few closely related
classes. The test confusion matrix (left) reflects a similar pattern, with relatively good
classification accuracy but with observable confusion between certain class pairs. The
information content of the classes for MS-SET3 is detailed in the table below. Accordingly,
"Test Precision”, "Validation Precision”, "Test Recall”, "Validation Recall”, "Test F1

Score", and "Validation F1 Score™ are calculated separately for each class.

Table 6.9. Classification performance metrics for MS-SET3 confusion matrix

Test Test Test F1 | Validation | Validation | Validation
Classes | Precision | Recall Score Precision Recall F1 Score

(%) (%) (%) (%) (%) (%)
Alcohol 100 80 89 88 70 78
Acetone 100 100 100 86 90 88
Flux 100 80 89 73 80 76
Cologne 57 80 67 68 75 71
Water 80 80 80 68 65 67

Results presented in the table reflect classification performance of the model for each class
(alcohol, acetone, flux, cologne, and water) during both the test and validation phases. In the
test set, the "Acetone” class achieved the highest performance with 100% precision and
recall, while the "Cologne" class showed the lowest performance with a precision of 57%.
This indicates that the model frequently misclassified samples from other classes as
"Cologne." In contrast, precision and recall rates for the remaining classes were relatively
high, suggesting that the model was generally effective in distinguishing between these
categories. In the validation phase, the "Acetone"” class once again yielded the highest F1
score at 88%, while the "Water" class had the lowest score at 67%. Overall, the metrics in
the validation phase were slightly lower than those in the test phase. This difference suggests
that the model adapted better to the training data, while its generalization capability varied
across different classes. These metrics were calculated based on three fundamental
evaluation criteria rather than solely relying on overall accuracy. Precision measures ratio of
true positive predictions for a class to all predictions made for that class. For instance, in the
test set, the model correctly predicted 8 "Cologne" samples (True Positives) and incorrectly
labeled 6 samples from other classes as "Cologne™ (False Positives). Therefore, precision is

calculated as 8/ (8 + 6) = 0.57. Recall is the ratio of accurately predicted "Cologne" samples
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to the total actual instances of the "Cologne™ class, computed as 8 / (8 + 2) = 0.80. F1 score
is the harmonic mean of precision and recall. These class-specific metrics are critical for
evaluating not only the overall performance but also how balanced and reliable the model is

across individual categories.

The consistency between validation and test results suggests that the model generalizes
reasonably well. In machine learning, not only validation and test performances but also
training performance plays a critical role in evaluating a model. While test and validation
results indicate how well the model generalizes to unseen data, training results provide
evidence of how effectively the model has learned from the data it was exposed to. A
balanced assessment across all three components ensures a more reliable and comprehensive
evaluation of the model’s behavior. MS validation and training confusion matrix results are

given Figure 6.10.
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Figure 6.10. Confusion matrix for MS-SET3 validation and training datasets

This figure presents confusion matrices for the training and validation sets of the MS-SET3
dataset. The training confusion matrix (right) shows that the model performs very well on
the training data, with a high number of correct predictions and minimal misclassifications

across all classes.

The outcomes indicate that the model has effectively learned the training patterns. Overall,
this comparison highlights the importance of evaluating not just test and validation sets, but

also the training performance, to gain a full understanding of the model’s behavior.
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Figure 6.11. presents the confusion matrices for the SWIR-SET3 dataset, showing the

model’s performance on the test set (left) and validation set (right). In both matrices, there

are noticeable misclassifications across multiple classes, indicating that the model struggles

to distinguish clearly between certain categories. The validation matrix shows slightly better

performance compared to the test set, with a higher number of correct classifications in some

classes. These results suggest that the model may be slightly overfitting to the training data

or that the class features in the SWIR domain are not distinct enough. Further optimization

or additional data augmentation may be required to improve generalization performance.
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Figure 6.11. Confusion matrix for SWIR-SET3 test and validation datasets

The information content of the classes for SWIR-SET3 is detailed in the table below.

Accordingly, "Test Precision", "Validation Precision”, "Test Recall", "Validation Recall",

"Test F1 Score", and "Validation F1 Score™ are calculated separately for each class.

Table 6.10. Classification performance metrics for SWIR-SET3 confusion matrix

Test Test | Test F1 | Validation | Validation | Validation

Classes | Precision | Recall Score Precision Recall F1 Score
(%) (%) (%) (%) (%) (%)
Alcohol 50 30 37 40 44 42
Acetone 54 60 57 63 60 61
Flux 38 50 43 45 45 45
Cologne 40 40 40 50 45 47
Water 45 45 45 61 65 63
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The overall distribution suggests that the model’s ability to generalize using SWIR data is
limited and could benefit from further tuning, additional data, or enhanced preprocessing to
improve class separability. The confusion matrix results for the RGB data set are shared in
Figure 6.12. According to these results, it is seen that the model experienced confusion

between some classes in both test and validation datasets.
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Figure 6.12. Confusion matrix for RGB-SETS3 test and validation datasets

The test and validation confusion matrices created for the RGB data set show that the model
experiences high confusion between certain classes. In particular, it is seen that some classes
are frequently confused with each other and the model has low accuracy rates in certain
classes. Model struggles to differentiate specific features between these classes, highlighting
the need for further optimization. For the SWIR data set, it can be said that this situation is
better than the RGB data set. The separation of the data is made more easily. However, it is
not at the desired level. The confusion matrix distribution for the MS data set is generally

consistent when the obtained test and validation accuracy values are examined.

Table 6.11. Classification performance metrics for RGB-SET3 confusion matrix

Test Test Test F1 | Validation | Validation | Validation
Classes | Precision | Recall Score Precision Recall F1 Score

(%) (%) (%) (%) (%) (%)
Alcohol 25 10 14 18 20 19
Acetone 19 70 30 10 11 10
Flux 33 20 25 26 20 22
Cologne 50 20 28 20 25 22
Water 0 0 0 27 25 26
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The information content of the classes for RGB-SET3 is detailed in the table below.
Accordingly, "Test Precision", "Validation Precision”, "Test Recall", "Validation Recall”,

"Test F1 Score", and "Validation F1 Score™ are calculated separately for each class.

6.2.3. Performance visualization

This part focuses on the graphical representation of the model performance, including
metrics such as test and validation accuracies also test and validation losses. Visualizations
such as accuracy-loss curves, confusion matrices, and feature maps are provided to illustrate

the results and analyze the model's effectiveness.

Graphs of losses and accuracies for test and validation output, architecture created using
DenseNet and Adam selected as the initial approach in this work and yielding the best results
are presented in Figure 6.13.
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Figure 6.13. Multispectral imaging (SET3) accuracy (left) and loss (right) outputs for 5-
class DenseNet — Nadam classification at 100 epochs

Performance of the model is good on the test data, with validation accuracy stabilizing
around 80%. The test loss decreases consistently, demonstrating that the model is
minimizing errors on the test set.

Validation loss initially decreases, and since there is an overall decreasing trend in losses.
Results obtained from the DenseNet-Adam experiment conducted with different epoch
numbers are presented in Figure 6.14.
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Figure 6.14. Multispectral imaging (SET3) accuracy (left) and loss (right) outputs for 5-
class DenseNet — Nadam classification at 50 epochs

In addition, results of test performed using SWIR camera with the DenseNet - Adam
configuration are shown in Figure 6.15. A test accuracy of 59.96% and a validation accuracy
of 47.46% were obtained. Some oscillation in accuracy can be observed. Although there was

a decreasing trend in the loss values, the validation loss still showed oscillations.
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Figure 6.15. SWIR imaging (SET3) accuracy (left) and loss (right) outputs for 5-class
DenseNet — Nadam classification at 100 epochs

When the data obtained using the RGB imaging method for 5 different classes was tested
with the DenseNet — Adam architecture. While the test loss remains stable, the validation

loss value increases as the number of epochs increases and shown in Figure 6.16.
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Figure 6.16. RGB imaging (SET3) accuracy (left) and loss (right) outputs for 5-class
DenseNet — Nadam classification at 100 epochs

6.3 Additional Applied Techniques

In addition to the primary experimental setup, supplementary techniques were applied to
further analyze and improve the model's output and robustness. The methods under this
section helped to evaluate the consistency of results, reduce overfitting risk, and examine

model performance in more generalized contexts.

6.3.1. K-Fold cross validation

K-Fold Cross Validation is a generally used evaluation method in machine learning that
supports assess a model’s ability to generalize to unseen data. Instead of relying on a single
train-test split, which may lead to biased or unstable performance measurements, dataset is
divided into K equal-sized folds. The model is then trained and validated K times, each time
using a different fold as the validation set and remaining folds for training. After all iterations
are done, the results are averaged to provide a more reliable estimate of the model’s

performance.

This method helps reduce variance and ensures that sample in the dataset is used exactly
once for validation and K—1 times for training, thus offering a balanced and robust
evaluation. Method is useful when the dataset is limited in size, as it maximizes the usage of

available data.
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In this study, 5-Fold Cross Validation was applied to validate the model trained with Nadam
optimizer and LeakyReLU activation function. Original validation accuracy of 89.09%
(obtained through a fixed validation set) for MS-SET3 slightly decreased to 85.86% after
applying the K-Fold strategy.

Table 6.12. presents the results of 5-Fold Cross Validation performed on the model trained
with the MS-SET3 dataset using the Nadam optimizer and LeakyReL U activation function.
The average accuracy obtained across the five folds was 85.86%, with an average loss of
0.39.

Table 6.12. 5-fold cross validation results for MS-SET3

FOLD A?:/cfﬂ :223 cz(r:/o ) Loss Precision (%) Recall Vg'ég?g (()(;0 ;: s
1 84.20 0.42 86.75 0.83 84.85
2 87.10 0.39 88.02 0.86 87.00
3 85.90 0.37 89.30 0.84 86.60
4 86.40 0.38 87.85 0.86 86.90
5 85.70 0.40 86.10 0.82 84.95
Average 85.86 0.39 87.60 0.84 86.06

Compared to fixed validation set results, a moderate decline in performance is observed.
This decrease aligns with the expectations outlined in model evaluation literature and reflects
a more realistic estimation of the model’s generalization capability across varying data splits.
These results confirm that although the initial fixed-split validation yielded higher scores,
the model still maintains strong and consistent performance when evaluated using a robust
K-Fold validation strategy. Method also shows that initial fixed validation split may have

provided a somewhat optimistic estimate.

Moreover, K-Fold Cross Validation allowed for a deeper analysis of class-level performance
consistency across folds. It was observed that certain classes were consistently predicted
more accurately, while others showed higher variability in predictions. This insight can
guide future work in data balancing, feature engineering, or class-specific augmentation to
improve weaker areas of the model. Structure of 5-Fold cross validation and performance

averaging is shown in Figure 6.17.
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Figure 6.17. Structure of 5-Fold cross validation and performance averaging
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The figure demonstrates the process of 5-Fold Cross Validation, where the dataset is divided
into five equal parts. In each iteration, one part is used for validation while the remaining
four are used for training. This process is repeated five times, ensuring that every subset is
used once as the validation set. At the end of all iterations, the performance scores from each
round are averaged to obtain a reliable estimate of the model’s overall performance. This

approach provides a more balanced and generalizable evaluation of the model.

6.3.2. Data merge application

The experiments on MS, SWIR and RGB data sets were carried out separately. In this part,
all data were combined and the algorithm was tested. The results obtained from the

experiments conducted at 100 epochs are shown in Table 6.13.

Table 6.13. Merged image dataset results

Merged Image Dataset
e (MS? SWIR,gRGB)
Test Accuracy (%) 71.21
Validation Accuracy (%) | 58.97
Test Loss 0.94
Validation Loss 1.75
F1 Score 59.43
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Table shows the test results of the dataset created by combining MS, SWIR and RGB data.
The test accuracy was calculated as 71.21%, which indicates that the model has limited
performance on the combined dataset. The validation accuracy was determined as 58.97%,

which is slightly lower than the test accuracy.

Test loss was calculated as 0.94 and the validation loss was calculated as 1.75. A higher
validation loss than test loss may indicate that model made more errors on validation data.
The F1 score was determined as 59.43, which may indicate that the model does not exhibit

a balanced classification performance.
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7. CONCLUSION AND FUTURE WORK

This study investigates the use of multispectral, short-wave infrared, and visible imaging
techniques in combination with deep learning architectures to classify five visually similar
liquid substances that cannot be distinguished by the human eye or standard RGB cameras.
These materials share similar visual characteristics, making them particularly challenging to
classify using conventional imaging approaches. Emphasizing the effectiveness of
multispectral imaging, which captures spectral responses at discrete wavelengths, the study
demonstrates that MS imaging is far more successful in differentiating such substances based
on their spectral signatures. Experimental findings revealed that MS imaging achieved a 5-
class classification accuracy of 96.46%, significantly outperforming SWIR (59.96%) and
RGB (44.16%) methods.

In terms of model selection, Convolutional Neural Networks were found to be the most
suitable architecture for this classification task due to their powerful feature extraction
capabilities. Various configurations were systematically tested, including different
activation functions, optimization algorithms, epoch values, and data augmentation
parameters. Among these, the combination of LeakyReL U activation function and Nadam
optimizer produced the most successful results, with the highest accuracy and lowest loss
values observed in both test and validation phases. This finding underscores the importance
of selecting appropriate training configurations when working with complex image-based

classification tasks.

Given the relatively small size of the original dataset, the study placed particular emphasis
on the use of data augmentation techniques to artificially increase number of training
samples and improve model generalization. Techniques such as rotation, scaling, width and
height shifting, shearing, and flipping were applied at empirically determined values.
Notably, a rotation range of 40 degrees and a transformation factor of 0.3 for other
augmentation parameters were found to be the most effective. These enhancements led to
measurable improvements in performance, validating the use of augmentation in data-

limited environments.
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To further support the model evaluation, confusion matrices were generated and analyzed,
providing insight into class-level accuracy and misclassification patterns. These matrices
confirmed the consistency between overall test accuracy and per-class performance,
illustrating that the results were both statistically sound and practically interpretable.
Additionally, when a mixed-data training approach was applied by combining all MS,
SWIR, and RGB datasets the model achieved a test accuracy of 55.21% and a validation
accuracy of 51.06%, suggesting that multi-modal integration, while slightly better than RGB

alone, may introduce complexity without yielding proportional benefits.

In conclusion, this study demonstrates that MS imaging combined with deep learning
constitutes a highly effective approach for the classification of visually similar liquid
substances. Findings highlight the potential of MS data in applications where subtle spectral
differences must be detected. For future research, the integration of multiple architectures,
larger and more diverse datasets, and advanced ensemble learning strategies could further
enhance performance. Additionally, exploring novel imaging technologies and refining
model configurations based on specific application requirements may lead to more robust
and scalable solutions in the domains of food authentication, material inspection, and quality

control.
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