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ABSTRACT 

Today, the use and purpose of imaging systems have become increasingly important in 

recent years due to their unique capabilities. With the advancement of modern technology, 

specialized imaging systems tailored to various application needs have diversified, leading 

to a significant increase in related research and practical implementations. Various imaging 

techniques beyond the visible spectrum, including IR, UV, thermal, and gamma imaging, 

have emerged as powerful tools for capturing material characteristics that are not observable 

through conventional visual methods. Recently, the integration of deep learning and machine 

learning approaches into these imaging systems has aimed to minimize operational errors 

and achieve more accurate outcomes. This study focuses on the classification of liquid 

materials that are visually indistinguishable and highly similar in appearance. Convolutional 

Neural Networks (CNNs), one of the most widely used deep learning-based image analysis 

models, were employed for this task. The materials targeted for classification included water, 

propanol (alcohol), acetone, cologne, and flux. Images of these substances were captured 

using both Short-Wave Infrared (SWIR) and visible region (RGB) cameras, resulting in a 

custom dataset comprising multispectral, SWIR, and RGB images. In the five-class 

classification scenario, the test accuracy obtained from RGB camera images was 34.16%, 

while SWIR camera images yielded a test accuracy of 59.96%. When multispectral images 

were captured using filters with cutoff wavelengths at 1200 nm, 1300 nm, 1400 nm, 1500 

nm, and 1600 nm, the classification performance significantly increased, reaching a test 

accuracy of 96.46%. In addition to accuracy, the F1-score was also considered, as it reflects 

both the precision of positive predictions and the overall balance of the model. The F1-scores 

were recorded as 32.72% for RGB images, 41.62% for SWIR images, and 89.09% for 

multispectral images. As a result, this study demonstrated that a deep learning-based 

classification model can successfully distinguish between visually similar liquid substances. 

It was shown that multispectral imaging notably enhances inter-class discriminability, 

providing significantly improved classification performance compared to standard RGB and 

SWIR imaging techniques. 
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ÖZET 

Günümüzde görüntüleme sistemlerinin kullanımı ve amacı, sahip oldukları özel kabiliyetler 

sayesinde her geçen gün daha da önem kazanmaktadır. Modern teknolojide, uygulama 

ihtiyaçlarına göre çeşitlenen görüntüleme sistemleri ile gerçekleştirilen çalışmalar da hızla 

artmakta ve çeşitlenmektedir. Görünür bölge görüntüleme dışında; kızılötesi (IR), gama, 

termal ve ultraviyole (UV) gibi farklı spektral bantlarda çalışan özel görüntüleme yöntemleri 

de bu alanda önemli yer tutmaktadır. Son yıllarda, uygulama hatalarını en aza indirmeyi 

hedefleyen derin öğrenme ve makine öğrenmesi yöntemlerinin, bu tür görüntüleme 

sistemlerine entegre edilmesiyle daha başarılı sonuçlar elde edilmeye başlanmıştır. Bu 

çalışmada ise, görsel olarak ayırt edilmesi güç ve birbirine oldukça benzeyen sıvı 

malzemelerin sınıflandırılması hedeflenmiştir. Derin öğrenme alanında yaygın olarak 

kullanılan görüntü tabanlı modellerden olan Evrişimli Sinir Ağı (CNN) mimarisi temel 

alınmıştır. Ayırt edilmesi hedeflenen malzemeler; su, propanol (alkol), aseton, kolonya ve 

flux olarak belirlenmiş ve bu maddelere ait görüntüler, hem Kısa Dalga Kızılötesi (SWIR) 

hem de görünür bölge (RGB) kameraları kullanılarak alınmıştır. Böylece, multispektral, 

SWIR ve RGB görüntülerden oluşan özel bir veri seti oluşturulmuştur. Beşli sınıflandırma 

senaryosunda, RGB kamera görüntüleri ile elde edilen test doğruluğu %34,16; SWIR 

görüntüleriyle %59,96 olarak belirlenmiştir. SWIR kamera ile 1200 nm, 1300 nm, 1400 nm, 

1500 nm ve 1600 nm dalga boylarında alınan multispektral görüntülerle yapılan 

sınıflandırmada ise test doğruluğu %96,46'ya ulaşmıştır. Sadece doğruluk oranı değil, aynı 

zamanda sınıflar arası pozitif tahmin başarısını ve modelin genel dengesini yansıttığı için F1 

skoru da değerlendirmeye dahil edilmiştir. RGB görüntüler için %32,72 olan F1 skoru, 

SWIR görüntülerinde %41,62 ve multispektral görüntülerde %89,09 olarak kaydedilmiştir. 

Sonuç olarak, bu çalışma kapsamında derin öğrenme temelli bir sınıflandırma modeli ile, 

gözle ayırt edilmesi güç malzemelerin tespiti hedeflenmiş; multispektral görüntüleme 

yönteminin, sınıflar arası ayırt ediciliği artırarak daha başarılı sonuçlar sunduğu ortaya 

konmuştur. 
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The symbols and abbreviations used in this study are presented below, along with their 
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1. INTRODUCTION 

 

In daily life, we interact with our environment through our sense organs. One of the most 

important of these senses is our ability to see. Our eyes perform the visual function and 

consist of various layers such as the iris and cornea. Most imaging systems are modeled like 

the eye and consist of various layers. The working range of the human eye is approximately 

between 380-740nm. The human eye, which has this limited working range, is not suitable 

for working at different wavelengths in our environment or in some cases does not have the 

ability to distinguish. For this reason, imaging systems capable of working at different 

wavelengths have been developed. Systems with this ability, with appropriate filters and 

processes, are used in various fields and for different purposes.  

 

Imaging systems have so many different application areas in modern life such as industrial, 

military, consumer, and medical applications [1]. Imaging methods cover certain regions of 

the spectral band. The visible spectral band covers between about 400 nm and 800 nm. In 

another study [2], a short-wavelength camera operating between approximately 900 nm and 

2500 nm was used. Studies have been conducted that it is a method that can be used for 

clinical approaches in the field of medicine. The SWIR imaging technique was used in 

imaging the mouse head. 

 

Each radiation region has its unique characteristics. Camera systems have special sensor 

technologies that utilize from characteristics properties of radiation. For instance, thermal 

cameras can detect heat radiation, or VNIR (Visible Near Infrared) cameras can be operated 

at the low-level light. SWIR cameras capable of capturing images in foggy weather [3], 

detecting rot or decay in the food industry, and identifying radiation at high temperatures 

include VNIR and LWIR (Long-Wave Infrared) camera features. Imaging systems used for 

surveillance, detection, observation, security, recognition, and identification may fail to 

fulfill their intended purpose in some cases. For instance, visually similar materials may not 

be distinguishable using visible imaging systems. Additionally, IR band imaging systems 

may sometimes be insufficient for distinguishing certain objects. Therefore, newer and more 

advanced imaging methods are being explored in ongoing research [4,5]. 
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All objects have special spectral characteristics at different wavelengths. The multispectral 

imaging technique is based on the principle of obtaining discrete images at different 

wavelengths [6]. Feature extraction can be done on multispectral images by using filters. To 

distinguish the materials whose visual spectral characteristics under visible light are similar 

[7] multispectral imaging is performed, generally using the VIS/NIR band [8]. However, in 

some conditions, this bandwidth is not enough for the application. The SWIR wavelength 

provides a larger coverage area than VIS/NIR wavelength. Hence it is more practical for 

object detection applications. Deep learning algorithms are applied to SWIR camera images 

for many applications such as classification and surveillance [9-10]. The use of CNN based 

architecture is especially common in deep learning applications [11-12]. There are different 

CNN models with updated last versions, such as Visual Geometry Group (VGG) [13], 

Densely Connected Convolutional Networks (Dense-Net) and Residual Networks (Res-Net) 

[14]. 

 

There are several parameters used in deep learning algorithms such as dropout rate, 

activation function, epoch number, learning rate, loss function, data augmentation, 

normalization, and optimizer [15]. These parameters should be fine-tuned experimentally 

for the architecture. Dropout rate is a method that avoids overfitting problems.  SoftMax, 

Rectified Linear Unit (ReLU), LeakyReLU, Hyperbolic Tangent, and Sigmoid. ReLU and 

LeakyReLU are generally preferred activation functions in deep learning models [16] 

because of their ability and efficiency to avoid the vanishing gradient problem. Especially 

LeakyReLU is similar to ReLU but LeakyReLU solves ReLU’s dying neuron issue. This 

situation allows the use of information-carrying neurons, especially complex datasets. The 

epoch number is used as the number of repetitions in the training dataset. The learning rate 

determines the speed of the model weights. A small learning rate provides slower reaction 

but more qualified learning, while a larger one enables faster but more oscillatory learning. 

Loss function is a technique that measures the error between the predicted values and the 

actual values. Cross-entropy loss is used for classification tasks, and the this method was 

preferred in this study. Data augmentation (standard augmentation) increases data variety by 

implementing transformations such as rotation, zoom, and shifting [17]. Normalization is 

the process of scaling data. This stabilizes the model and helps it learn more efficiently. An 

optimizer function is an algorithm that minimizes loss value for learning.  
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There are various optimization approaches, such as ADAM (Adaptive Moment Estimation), 

Gradient Descent (GD), RMSprop (Root Mean Squared Propagation), Stochastic Gradient 

Descent (SGD), and AdaGrad (Adaptive Gradient Algorithm) [18]. Choice of optimizer 

depends on the certain preferences and situations [19]. ADAM is a widely used, popular, 

and effective optimizer for deep learning applications [20]. Both LeakyReLU and ADAM 

are well-suited for deep learning tasks. The most common performance parameters in deep 

learning applications are test accuracy, test loss, validation accuracy, validation loss, and F1 

score [21,22]. Test accuracy shows the accuracy of the model on the test dataset, meaning 

how accurately the model predicts new, unseen data. High test accuracy suggests that the 

model performs well on new data. Test loss measures the error rate of the model on the test 

dataset. If test loss has a low value, this indicates good generalization. Test loss is also a 

metric that calculates difference between predicted values and actual classes, depending on 

loss function used. Validation accuracy shows the result of the validation dataset during 

training. It helps identify overfitting or underfitting, and validation accuracy is used for 

model performance. Overfitting occurs when the model fits the training data, learning noise 

and details specific to the training set, and underfitting is the failure of the training data's 

underlying patterns. Validation loss is the error rate of the model on the validation dataset. 

The F1 score is used to measure the model classification performance. F1 score balances the 

accuracy metric, which is especially helpful for imbalanced datasets [23]. 

 

Traditional methods for separating liquids typically rely on physical and chemical properties 

and are often performed manually in laboratory environments. Techniques such as 

distillation, solvent extraction, centrifugation, and filtration are commonly used but tend to 

be time-consuming and labor-intensive. In contrast, this study introduces a novel and 

contact-free approach that integrates multispectral imaging inspired by SWIR camera 

technology with deep learning algorithms for liquid classification. Visually similar 

substances such as water, flux, acetone, alcohol, and cologne were selected to challenge 

standard RGB imaging, which often fails to distinguish such materials. Multispectral (MS), 

SWIR, and RGB images were compared under identical visual conditions using filters in the 

1200–1600 nm range to capture MS images. Both binary (2-class) and multiclass (5-class) 

classifications were performed, and results were evaluated comparatively. CNN-based deep 

learning models such as DenseNet, VGG16, VGG19, ResNet, and Inception were utilized 

alongside various optimizers including SGD, RMSProp, Nadam, and Adagrad. 

Experimental findings demonstrate that the proposed MS imaging approach, when combined 
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with deep learning, yields significantly better classification performance than RGB-based 

methods. This study aims to demonstrate that multispectral imaging, when combined with 

deep learning, offers a robust and scalable solution for the non-invasive classification of 

visually similar liquids, potentially reducing the need for complex laboratory procedures. 

 

Chapter 1 introduces the purpose and scope of the study, highlighting the goal of 

distinguishing visually similar substances using multispectral (MS) imaging and deep 

learning techniques.  

 

Chapter 2 provides a comprehensive literature review on imaging systems (RGB, SWIR, 

MS) and deep learning algorithms.  

 

Chapter 3 details various imaging technologies, focusing on the characteristics and 

principles of visible (RGB), infrared (SWIR), and multispectral (MS) systems.  

 

Chapter 4 presents the fundamentals of deep learning, loss functions, neural networks, 

optimization algorithms, activation functions, and commonly used architectures such as 

DenseNet, VGG16, VGG19, ResNet, and Inception.  

 

Chapter 5 describes the dataset preparation and methodology, including how the data were 

collected, preprocessed, and augmented for use in training.  

 

Chapter 6 includes experimental evaluations. Different CNN architectures and optimization 

algorithms (Adam, SGD, RMSProp, Nadam, Adagrad) are tested. Binary and multiclass 

classification results are compared across RGB, SWIR, and MS modalities, showing that 

multispectral imaging yields the best results.  

 

Chapter 7 concludes this study with key findings and proposes directions for future research. 
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2. LITERATURE OVERVIEW 

 

Multispectral imaging captures image data at certain wavelength bands. Each band captures 

distinct information, making this method suitable for applications like agriculture, 

environmental monitoring, and medical imaging [24,25]. Multispectral imaging offers 

efficient results with lower costs and reduced complexity and provides a more practical 

option for operational applications [26]. Infrared imaging systems have their origins in 

recent history. Infrared imaging systems encompass the latest technological developments, 

and the applications of infrared sensors have become widespread in industrial, medical, and 

various imaging fields [27,28,29]. However, SWIR cameras have a slightly broader range 

of applications in multispectral imaging due to their effective bandwidth and wide array of 

spectral features [1,6]. SWIR cameras operate in the 900–2500 nm range when capturing a 

broader spectrum, covering both the traditional SWIR range (900–1700 nm) and extending 

into longer wavelengths. Therefore, SWIR cameras are widely preferred for many 

multispectral applications, and imaging performance is further enhanced by combining the 

advantages of multispectral and SWIR imaging [4]. Their ability to excel in low-light and 

foggy conditions, as well as to detect subtle material differences, makes them indispensable 

in fields such as agriculture, material analysis, and environmental monitoring. Combining 

multispectral imaging with deep learning applications offers several powerful benefits, 

especially in fields requiring complex data analysis and detailed object detection [30]. 

Multispectral imaging, utilizing SWIR, provides a broader spectral range than standard 

visible light, allowing deep learning algorithms to capture subtle details across multiple 

SWIR wavelengths [9].  

 

In another study [10], spectral differences between lettuce and weeds were analyzed using 

multispectral images. Deep learning models were trained to detect weeds by processing these 

images. The paper describes in detail the datasets, model architecture and training methods 

used in this process. A deep learning model that automatically detects water bodies using 

multispectral satellite images taken at different wavelengths was developed. The model 

aimed to distinguish water bodies in images with high accuracy using a convolutional neural 

network (CNN) based architectural approach [11]. The use of CNN based architecture is 

especially common in deep learning applications. 
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Deep learning, as a subfield of machine learning, utilizes multi-layered neural networks to 

analyze large volumes of data. Deep learning architecture learns features to get high 

accuracy in complex missions such as image recognition, speech processing, and language 

processing from the collected data [31]. A review of the literature on neural networks 

revealed the existence of various architectures with unique features designed for problems 

such as image, sound, text, and other data types. In this study, the focus was placed on CNN, 

which offer advantages in applications where spatial features are important, such as visual 

processing, image classification, and object recognition. CNN architecture was particularly 

preferred due to its appropriate structure and widespread use in image processing [32]. The 

CNN-based deep learning method produces outputs based on adjustable parameters in its 

architecture. Critical elements such as learning rate, epoch, and dropout directly influence 

the performance, generalization, and learning process for deep learning models. 

Consequently, the model can achieve enhanced performance, improved generalization 

ability, greater training efficiency, and effective data utilization [33]. In the literature, deep 

learning applications are used for identifying similar objects and detecting changes in images 

where the visible spectrum is limited, as well as for multispectral imaging applications. In a 

study [34], the separation of objects that are visually very similar, or indistinguishable to the 

human eye, using a deep learning method applied to multispectral imaging obtained with 

SWIR cameras is discussed. An attempt was made to leverage the bandwidth of the infrared 

camera and to separate the materials by incorporating deep learning into this study. This 

method facilitates the precise classification of materials through spectral signature analysis 

and can be seamlessly integrated with other imaging methods such as RGB or IR.  

 

In the study [35], a deep learning application was conducted to the NIR band on datasets 

belonging to 9 different classes. Deep learning models for food detection was examined. The 

test accuracy and F1 score output were explained using the Dense-Net model, both with and 

without transfer learning. The highest accuracy of 63% was achieved by mixed datasets, but 

then 96.46% accuracy was achieved by using multispectral datasets collected at five distinct 

wavelengths. With the data augmentation method, the accuracy results increased from 63% 

to around 74% and the effect of data augmentation was emphasized. In the conclusion 

section, the importance of multispectral imaging, the applicability of deep learning methods 

and the conditions affecting performance were mentioned. In [36], a deep learning model 

was developed to classify different wound types by using RGB images. The model output 

was evaluated by utilizing the cross-validation method. A maximum accuracy rate of 96.4% 
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and an average accuracy rate of 94.28% were achieved in 2-class classification. For 3-class 

classification, the model achieved a maximum accuracy rate of 91.9% and an average 

accuracy rate of 87.7%. The test accuracy value was found to be 92.20% for 4-class 

classification and 84.94% for 5-class classification. These findings highlight that the model 

also performs well on different datasets.  

 

Another study [37] reviewed 170 articles on the deep learning research status. Both 

multispectral and hyperspectral images are considered in the article. These images are 

combined with the deep learning method and the work in 170 different articles is examined 

and the best results are tried for different class numbers and classification types. Satellite 

imagery includes satellites such as Landsat 5 and 8, GF-1, Sentinel-1. Most of these satellites 

produce multispectral imagery. In particular, Sentinel-2 provides multispectral imagery with 

13 different spectral bands. Situation is stated in the article that 90% accuracy was achieved 

in the study conducted with Sentinel-2 for 5 different classes based on CNN. In addition, 

91.2% accuracy was found for 3 classes. The best results were found as 93.3% using Unet 

and ResNet duo for 10 classes.  

 

In the study [38], recognition and classification operations were performed on wheat seed 

images obtained using three different imaging techniques. Fusion imaging achieved the 

highest accuracy of 92.63% in RGB-SWIR combinations. Additionally, a success rate of 

91.13% was reported in tests conducted with the VGG16 model. Within the scope of the 

study, recognition and classification studies were carried out on the dataset created from 

wheat images obtained from RGB, VNIR, and SWIR imaging techniques. Using SWIR 

camera data, an accuracy of 95.31% was obtained. Findings indicate that the fusion 

technique may not always be sufficient in deep learning applications. As a potential solution, 

the multispectral imaging technique presents a promising new opportunity. 

 

In a study [39] aiming to detect counterfeiting with spectroscopy-based sensors, meat pieces 

were mixed in 25% increments to create different levels of counterfeiting mixtures and six 

different samples were prepared from each level. They were analyzed using spectroscopy 

and multispectral imaging. The good performance of MSI-based models compared to other 

sensors was highlighted, with accuracy rates ranging from 87% to 100%. In another article 

[40], dataset features and testing techniques affecting the performance of classification 

algorithms were examined in detail. In the study, experiments were conducted using 32 
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different datasets and 9 different classification algorithms commonly used in the literature. 

For example, it was shown how effective the physical class change was for the 

Biomechanical Properties of Orthopedic Patients class. 

 

In this study utilized deep learning algorithms to analyze five distinct materials. Five 

different classes were created, and data for these classes were collected in a laboratory 

environment. Datasets were obtained using SWIR cameras and filters of different 

wavelengths. Then, these data were processed using deep learning methods, and the results 

were recorded. An ideal architecture was determined by analyzing these results. 2-class, and 

5-class classifications were examined. Study began with data obtained from RGB, SWIR, 

and multispectral images for 5-class classification. The highest 5-class test accuracy of 

96.46% was obtained using multispectral imaging, compared to 59.96% with SWIR and 

44.16% with RGB. Metrics such as test loss, validation accuracy, F1 score, and validation 

loss, which influence the deep learning method, were also examined. In this study, class 

differences in 5-class multispectral imaging were also analyzed, and the results were 

validated accordingly. A slight increase in test accuracy was observed as the number of 

classes was reduced. 
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3. IMAGING SYSTEMS 

 

In this section, visible, infrared, multispectral, and hyperspectral imaging techniques are 

explained. SWIR and multispectral imaging techniques, which are the focus of this study, 

will be discussed in detail. Imaging systems are technological tools designed to capture, 

analyze, and process visual data from specific objects, areas, or environments. These systems 

typically utilize sensors or cameras to detect light or other electromagnetic waves and 

convert this information into a digital format for further analysis. In this section, the types 

of imaging systems, sensors, and optics are explained. The study also includes an 

explanation of the data collection methodology. The Electromagnetic spectrum encompasses 

electromagnetic radiation range, categorized by energy, wavelength, and frequency. It 

begins with radio waves and ends with gamma rays, encompassing diverse energy levels. 

Electromagnetic spectrum is given in Figure 3.1.  

 

 

Figure 3.1. Electromagnetic spectrum views 

 

There are grey areas in the infrared region represent atmospheric attenuation due to gases, 

water vapor and other atmospheric situations. The boundaries in spectral analysis are not 

rigidly defined and should be considered flexible. For instance, 1000nm can belong to both 

the NIR band and the SWIR band. Likewise, the visible spectrum does not have a sharp 

cutoff, and it cannot be definitively said to end at 700nm [38]. The four primary types of 

imaging systems are RGB imaging, multispectral imaging, IR imaging, and hyperspectral 

imaging.  
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3.1. Visible (RGB) Imaging Systems 

 

The RGB imaging method, widely used in daily life, is an imaging technology that operates 

within the visible light spectrum. The RGB imaging method captures data from the three 

main colors perceivable by the human eye (red, green, blue) and combines these color 

channels to create a full-color image. The RGB spectrum spans approximately 400 nm to 

700 nm, corresponding to the range perceivable by the human eye. The working principle of 

the RGB camera is illustrated in Figure 3.2. An image captured in analog form is converted 

into digital format and processed further to produce an output [39,40]. 

 

 

Figure 3.2. Fundamentals of RGB camera operation 

 

RGB imaging systems, which is frequently used in our daily lives, offers many advantages 

but also has certain limitations. It is limited in its ability to capture wavelengths outside the 

visible light spectrum. Therefore, alternative imaging methods are employed to overcome 

these limitations. 

 

3.2. Infrared (IR) Imaging Systems 

 

Infrared (IR) imaging systems have a technology designed to detect infrared light and 

convert it into an image format. Infrared light, which cannot be seen by human eye, occupies 

the region of the electromagnetic spectrum beyond visible light, ranging approximately from 

700 nanometers to 12 millimeters. Infrared camera systems are classified into four distinct 

bands such as VNIR/NIR (Visible Near Infrared), MWIR (Mid-Wave Infrared), LWIR 

(Long-Wave Infrared), and SWIR (Short-Wave Infrared). In this section, the characteristics 

of the SWIR band and the technology in SWIR band cameras are detailed. 
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3.2.1. Near infrared characteristic and technology 

 

The NIR (Near-Infrared) band which lies within the electromagnetic spectrum ranging 

between 700 nm and 1000 nm exists just beyond visible light and before the SWIR (Short-

Wave Infrared) region. Absorption and reflection properties in this band are sensitive for 

distinguishing material characteristics. Infrared light penetrates deeper than visible light and 

is more effective for environmental conditions.  

 

3.2.2. Short wave infrared characteristic and technology 

 

The SWIR (Short-Wave Infrared) band occupies a region of the electromagnetic spectrum, 

ranging approximately from 900 nm to 2500 nm, beyond the NIR (Near-Infrared) region and 

before the MWIR (Mid-Wave Infrared) region. Positioned with wavelengths that reflect light 

similar to visible light, SWIR provides unique imaging capabilities. Its absorption and 

reflection properties are effective for identifying subtle material differences and detecting 

parameters like water content, chemical composition, and surface properties.  

 

SWIR is capable of penetrating through atmospheric elements such as haze, smoke, and fog, 

making it suitable for challenging environmental conditions. Images captured by SWIR and 

visible cameras under foggy weather conditions are presented, as shown in Figure 3.3. 

 

 

Figure 3.3. Comparison of visible light (left) and SWIR imaging (right) in low-visibility 

conditions. The SWIR image demonstrates to penetrate atmospheric 

interference [9] 

 

Figure 3.4 illustrates views of an InGaAs (Indium Gallium Arsenide) SWIR camera system. 

SWIR imaging method is used in applications for agriculture, surveillance, material analysis, 
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security, and industrial due to its ability to detect features beyond the visible and NIR bands. 

In this study, multispectral imaging leveraging SWIR technology was applied. 

 

The production of SWIR cameras involves various processes, including ROIC (Read-Out 

Integrated Circuit) fabrication, flip-chip bonding, wire bonding, packaging, and electronic 

integration [43]. 

 

 

Figure 3.4. Packaged SWIR detector (left) and electronic boards (right) [42] 

 

The ROIC is a key component that reads electrical signals from the photodetector array and 

processes them for output. Fabrication involves advanced semiconductor manufacturing 

techniques to ensure low noise and high performance in signal readout. Flip-Chip bonding 

is a process where the photodetector array is flipped and directly mounted onto the ROIC 

using precise alignment. This method minimizes signal loss and improves the electrical 

connection between the sensor and the circuit. In cases where flip-chip bonding is not used, 

wire bonding connects the sensor and ROIC through ultra-thin wires. It is a reliable and cost-

effective technique for creating electrical connections.  

 

Packaging which may also include the integration of optical filters or windows, depending 

on the application is a process of enclosing the SWIR sensor in a protective housing to shield 

it from environmental factors like moisture, dust, and mechanical stress. Electronic 

Integration involves connecting the SWIR sensor module to additional electronic 

components, such as proximity card, analog-to-digital converters (ADC), interface card and 

power supply systems, to enable seamless functionality in devices or systems. 
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Calibration is the process of ensuring that the sensor operates accurately within its specified 

wavelength range and performance parameters. Calibration involves adjusting the sensor's 

response to light intensity, wavelength, and other environmental factors to optimize accuracy 

and consistency. Calibration for a SWIR camera involves addressing key aspects such as 

correcting dead pixels, accounting for the quantum efficiency effect, and ensuring proper 

sensor cooling. 

 

Temperature significantly impacts the performance of SWIR cameras in several ways. At 

higher temperatures, the dark current in SWIR detectors increases, which can reduce the 

Signal to Noise Ratio (SNR). Temperature changes may cause slight shifts in the spectral 

response or lead to a degradation in quantum efficiency. Maintaining stable temperature 

conditions is therefore important for optimal SWIR camera performance. Figure 3.5. 

indicates temperature change of the SWIR camera used in this study over time. 

 

 

Figure 3.5. Temperature change over time of the SWIR camera used in this study 

 

3.2.3. Mid wave infrared characteristic and technology 

 

The MWIR (Mid-Wave Infrared) band occupies a region of the electromagnetic spectrum 

between 3 µm and 5 µm (3000 nm to 5000 nm). MWIR imaging is focusing on thermal 

emissions from objects, making it distinct from reflective SWIR imaging and longer 

wavelength LWIR thermal imaging. Materials like HgCdTe (MCT) and InSb (Indium 

Antimonide), which are used in MWIR detectors, involve more complex and expensive 

manufacturing processes. On the other hand, the InGaAs (Indium Gallium Arsenide) 

material used in SWIR sensors benefits from more widespread and mature production 
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technologies, providing a significant cost advantage. Figure 3.6 presents a visual comparison 

of images captured by MWIR and SWIR cameras. 

 

 

Figure 3.6. Comparison of images. a) MWIR image b) SWIR image [44] 

 

3.2.4. Long wave infrared characteristic and technology 

 

The LWIR (Long Wave Infrared) band covers a wavelength range between 8 µm and 12 µm 

(8000 nm to 12000 nm) in the electromagnetic spectrum. and is primarily associated with 

thermal radiation rather than reflected light. LWIR imaging focuses on capturing the heat 

naturally emitted by objects, which makes ideal for applications requiring temperature 

measurement and thermal imaging, for low-light conditions [45]. In Figure 3.7, images of 

different materials captured with an LWIR camera are presented.  

 

 

Figure 3.7. Thermal image captured using an LWIR camera, illustrating temperature 

variations across different materials [46] 
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3.3. Multispectral Imaging (MS) Systems 

 

Multispectral imaging method captures image data at certain wavelengths. Unlike traditional 

cameras that record images in three color channels, multispectral systems utilize multiple 

narrow spectral bands, often extending into non-visible regions. These systems are designed 

to extract detailed spectral information about objects or scenes, making them highly valuable 

for applications requiring precise material or feature differentiation. Multispectral imaging 

can be used effectively because it operates at discrete wavelengths within specific intervals 

[47]. This enables the differentiation of materials and objects based on their unique spectral 

signatures. It is widely applied in agriculture, defense, security, industrial quality control, 

remote sensing, and medical diagnostics, where accurate material characterization is critical. 

For instance, in agriculture, infrared bands can detect plant stress, water content, or 

chlorophyll concentration, which are invisible to the naked eye. Similarly, in material 

science, spectral data in non-visible ranges can help distinguish between materials based on 

their reflectance properties. Multispectral images of five different materials (water, 

propanol, cologne, acetone, flux) used in this thesis are presented in Figure 3.8.  

 

 

Figure 3.8. Multispectral images captured at 1200 nm, 1300 nm, 1400 nm and 1500 nm 

wavelengths imaging 
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Materials exhibit different responses at various wavelengths. These variations in spectral 

responses highlight the unique characteristics of each material, which can be leveraged for 

precise identification and analysis. This multispectral approach is particularly useful for 

distinguishing between materials based on their spectral signatures. A multispectral image 

comparison of a plant, as shown in Figure 3.9, demonstrates its utility in analyzing images 

captured within the 400 nm to 1000 nm range. Multispectral imaging is not limited to visible 

light; it also extends into infrared regions, enhancing its range of applications. By 

incorporating wavelengths such as NIR and SWIR, multispectral imaging systems become 

invaluable for remote sensing, healthcare diagnostics, and industrial quality control. 

 

 

Figure 3.9. Comparison of the MS images. a) blue, b) green, c) red visible bands, d-f) 

infrared bands, g) full-spectrum reflectance, and h) the original image of a plant 

[48] 

 

The ability to analyze data across diverse spectral bands makes multispectral imaging 

systems versatile tools in science, industry, and beyond. Due to their cost-effectiveness, 

faster data acquisition, and ease of integration, we prefer multispectral imaging for 

applications where detailed spectral resolution is not critical but efficiency and practicality 

are essential [46]. In multispectral imaging, light interacts with materials through reflection, 

absorption, and transmission, providing unique spectral signatures for each material. 
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Reflection occurs when light bounces off a material's surface, with the amount and type of 

reflection depending on the material's properties and the wavelength. Absorption happens 

when materials absorb specific wavelengths of light, converting them into energy such as 

heat. Transmission means that light passing through a material. Transparent materials like 

water or thin films may transmit some visible light while blocking other wavelengths, such 

as near-infrared. By analyzing these interactions, multispectral imaging generates unique 

spectral signatures that allow for precise material identification [49].  

 

3.4. Hyperspectral Imaging (HS) Systems 

 

Hyperspectral imaging systems capture image data across hundreds of narrow wavelength 

bands along the electromagnetic spectrum. Unlike traditional multispectral systems, 

hyperspectral systems utilize a much larger number of spectral bands, providing more 

comprehensive and detailed information about an object or scene. These systems analyze 

the spectral signature of each pixel, enabling highly precise material identification and 

feature detection.  

 

Hyperspectral imaging operates in continuous and narrow wavelength ranges, allowing even 

the smallest spectral differences between materials and objects to be identified. This makes 

it critical in fields such as agriculture, environmental monitoring, defense, medical 

diagnostics, and remote sensing. Wide spectral coverage enables precise analysis regardless 

of environmental conditions.  

 

Multispectral imaging has several advantages over hyperspectral imaging, particularly in 

terms of practicality and cost-efficiency. Another advantage is the faster data acquisition. 

Since multispectral imaging involves capturing fewer bands, it operates more quickly, 

enabling real-time imaging or faster processing in time-sensitive applications such as 

industrial inspections or remote sensing. Portability makes them ideal for fieldwork or 

applications requiring lightweight and easy-to-use equipment [50]. 
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4. LEARNING ARCHITECTURES PERSPECTIVE 

 

In this section, techniques for machine learning and fundamentals of deep learning, which 

are part of artificial intelligence, are discussed. Deep learning is subset of machine learning, 

like the way humans learn from data. Artificial intelligence (AI) includes machine and deep 

learning that excels in analyzing large, complex datasets to identify structures and make 

estimations. Deep learning models include multiple layers, known as artificial neurons, that 

process data. Each layer learns the specific features from the input data, gradually building 

a more abstract understanding as the data moves [48]. In the human brain, neurons 

communicate through electrical impulses. Similarly, in artificial neural networks, neurons 

are connected by weighted links, and these weights determine how signals are passed and 

combined. The conceptual relationship between deep learning and the human brain has been 

a guiding principle in the development of neural network architectures. Hierarchical 

relationship between Artificial Intelligence, Deep Learning, Machine Learning, and Neural 

Networks is shared in Figure 4.1. Deep learning models are composed of multiple hidden 

layers [51]. Early layers capture low-level features like edges, middle layers recognize parts 

of objects, and deeper layers identify entire objects. 

 

 

Figure 4.1. Hierarchical relationship of artificial intelligence and subfields 
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4.1. Deep Learning Fundamentals 

 

Deep learning is a machine learning approach that mimics human brain functions through 

artificial neural network models. It consists of several fundamental building blocks and 

principles. These layers progressively extract higher-level features, making it particularly 

effective for complex missions such as language processing, image recognition, and speech 

analysis. Artificial neural networks are inspired by biological nerve cells. They are models 

developed within this structure and are based on mathematical calculations. An artificial 

neural network is basically formed of neurons, layers and weighted connections [18]. The 

structure of the artificial neuron is shown in Figure 4.2. 

 

 

Figure 4.2. Fundamental artificial neuron model 

 

Each artificial neuron receives input. It multiplies these inputs with certain weights. Because 

the relevant neurons contain different information. Then it passes through a summation 

function. After the summation function, the total information content obtained is summed 

with a bias value [18]. The total information content collected with bias is transmitted to the 

activation function. It is ensured that the information to be obtained at the output is consistent 

with each other. "X" represents the inputs of the artificial neuron. The parameter indicated 

as "W" shows the effect of the inputs on the model. Each input has a different effect. These 

inputs are collected together with their effects. The bias value indicated by "b" is transmitted 

to the activation function. The information content passed through the activation function is 

obtained as output data. Output of a neuron is calculated by the following formula. 
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z =  ∑(Xn ∗ Wn) + b

n

k=0

 

 

Neural networks are important for deep learning, consisting of layers of connected neurons 

that process input data and extract meaningful features. Structure of a neural network is 

composed of three main layers which are input, output, and hidden. The input layer is the 

first layer of the network, where raw data, such as text, images or signals, is fed into model. 

The hidden layers are responsible for feature extraction by applying transformations like 

convolutions or non-linear activations to learn complex patterns in the data [61]. 

 

 

Figure 4.3. Feedforward neural network between layers [52] 

 

The forward propagation equation is used to calculate the output of the neural network by 

processing it layer by layer. In this process, the input data is transmitted through the network 

and the weighted sum of the inputs is calculated in each layer. A bias term is added to this 

sum and the result is passed through an activation function to determine the output of that 

layer. This output is transmitted to the next layer.  

 

The process continues through all hidden layers and finally reaches the output layer, creating 

the model's prediction. Forward propagation allows the network to make predictions based 

on the given input data. Backpropagation is an algorithm used to train artificial neural 

networks by minimizing the difference between predicted and actual outputs.  

 

(4.1) 
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Figure 4.4. Backpropagation neural network between layers 

 

Backpropagation begins with the initialization of weights and biases, which are typically set 

to random values in the network. In the next step, a forward pass is performed, and the loss 

is calculated using a chosen loss function to measure the difference [66]. In the image, the 

arrows represent the forward flow of information (orange) and the back propagation of the 

error signal (blue).  

 

4.2. Deep Learning Methods 

 

Deep learning represents a specialized field within machine learning that focuses on training 

models with multiple layers to automatically extract features from raw data and make 

predictions. This section explains that fundamental concepts of deep learning, providing an 

understanding of activation functions, regularization methods, loss functions, optimization 

strategies, and the structure of artificial neural networks. These concepts form the foundation 

for building and fine-tuning effective deep learning models [60]. 

 

4.2.1 Artificial neural networks 

 

Artificial Neural Networks (ANNs) models are inspired by structure of biological neural 

networks like human brain. It is a key concept in artificial intelligence, particularly in deep 

and machine learning methods, designed to identify patterns and relationships in data to 

make decisions or predictions. Neural networks form base of deep learning. Consistency of 
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neurons that processes input data and transform it into meaningful representations. Each 

neuron applies a mathematical operation, such as a weighted sum of activation function, to 

learn features from the data. Structure of ANNs basically includes input layer, output layer, 

and hidden layer.  

 

The input layer receives raw data, where each neuron represents a feature. The hidden layers 

process this data, identifying patterns and relationships using weighted sums, biases, and 

activation functions, with their number and size impacting performance. The output layer 

generates final predictions, with neurons representing classes for classification or continuous 

values for regression tasks. The key components of neural networks include neurons, which 

are basic computational units that process and transfer data.  

 

Weights (w) and biases (b) are parameters adjusted during training to minimize prediction 

errors. Weights determine the impact of each input in predicting the neuron's output and are 

learned during the process. The bias is an additional parameter in artificial neural networks, 

used to adjust the output along with the weighted sum provided as input to the neuron [18]. 

Activation functions introduce non-linearity to learn complex relationships. The loss 

function parameters of error between the predicted outputs and actual targets, guiding the 

training process. Optimization algorithm adjusts weights and biases to minimize the loss 

function [18]. 

 

Long Short-Term Memory (LSTM) 

 

LSTMs effectively handle the vanishing gradient problem, making them ideal for processing 

sequential data over extended periods [71]. Cell state shows the long-term memory of the 

network, acting as a pipeline that transfers information across sequential steps while 

retaining important data and filtering out irrelevant information [18]. 

 

Recurrent Neural Network (RNN) 

 

RNNs are class of neural networks structured to process ordered data using a hidden state 

that accumulates contextual knowledge from previous steps. They are commonly used for 

tasks such as time series prediction, speech recognition, and natural language processing. 
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Convolutional Neural Networks (CNN)  

 

CNN is a specialized form of artificial neural network designed to process structured data, 

particularly images, videos, and other spatially-organized data. CNNs are used in tasks like 

image recognition, object detection, and computer vision. CNNs are built on notion of 

convolution, which involves applying filters to input data to extract important features such 

as edges, textures, and patterns. Features are learned automatically during training, making 

CNNs highly effective for processing visual data. Architecture of a CNN typically consists 

of several types of layers, including convolutional layers for feature extraction, flatten, 

pooling layers for dimensionality reduction, and fully connected layers for making 

classifications or predictions [73]. Basic structure of a CNN includes several layers. The 

input layer accepts raw data, such as an image represented as matrix of pixel metrics. The 

convolutional layer extracts local features from input using filters that sense specific patterns 

like edges or textures by sliding over the data. The image classification structure of the CNN 

architecture is shown in Figure 4.5. 

 

 

Figure 4.5. Architecture of a Convolutional Neural Network for image classification 

 

Activation function applies a non-linear transformation to the feature extraction maps. 

Pooling layer decreases spatial dimensions of the feature maps, protecting important features 

while lowering computational complexity, using methods like average output and max 

pooling. The fully connected layer links all neurons to produce the final output, often used 

for predictions such as class probabilities. Output layer generates the network's predictions, 
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with neurons representing target classes or regression outputs [73]. Process begins with an 

input image that is passed through convolutional layers to extract features like edges and 

textures. Pooling layers follow, reducing dimensions of the activation pattern while 

preserving major features and lowering complexity. Max pooling method is shown in the 

Figure 4.6. 

 

 

Figure 4.6. Max pooling operation for dimensionality reduction  

 

The image illustrates a 2x2 Max Pooling method generally used in CNNs. In this process, 

input feature map is divided into 2x2 partitions, and maximum value from each region is 

selected to form a smaller output matrix. This reduces the spatial dimensions, lowers 

computation, and helps retain the most important features. The feature maps are then reduced 

into a one-dimensional vector and passed into fully connected layers. Flattening is a process 

of converting the multi-dimensional feature map into a one-dimensional vector. This step is 

essential before feeding the data into fully connected layers for classification. Flattening for 

feature map is shared in Figure 4.7. 

 

 

Figure 4.7. Flattening a feature map into one-dimensional vector   
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Finally, the output layer provides the predictions, assigning the input to a specific class. This 

architecture highlights the hierarchical feature extraction and decision-making capabilities 

of CNNs. ResNet, VGG16, VGG19, Inception and DenseNet architectures are explored to 

evaluate their performance in feature extraction and classification tasks.  

 

• Residual Neural Network (ResNet) 

 

ResNet is designed to improve the output of deep learning models. ResNet addresses 

vanishing gradient problem that happens in deep structure. Structure of ResNet includes the 

residual block and the deep architecture. Residual block consists of a series of layers, 

typically convolutional layers, along with connection for the layers [76]. 

 

• Visual Geometry Group (VGG) 

 

VGG19 and VGG16 are developed by the VGG group [74]. VGG16 includes of 16 weight 

layers, including 3 fully connected and 13 convolutional layers, while VGG19 is a deeper 

version with 19 weight layers, including 3 fully connected and 16 convolutional layers [77].  

 

• Inception 

 

Inception was designed to improve computational efficiency and enhance performance in 

image classification and object detection tasks. Inception architecture is especially known 

for its innovative use of modules, which activate network to capture features at multiple 

scales within a single layer [78]. 

 

• Dense Convolutional Network (DenseNet) 

 

DenseNet was designed to address some of limitations of traditional deep networks, such as 

inefficiency in parameter usage and difficulty in training very deep models. It achieves this 

through dense connectivity, where each layer is connected to subsequent layers, enhancing 

feature reuse and improving gradient flow [79]. The relationship between the dense blocks 

and the layers within the DenseNet architecture is shared in Figure 4.8. 
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Figure 4.8. DenseNet architecture with dense-blocks and transition layers [79] 

 

Dense block is the core component of DenseNet, where layers are connected to other layers 

in a feed forward structure. Within a dense block, features are concatenated rather than 

added, as seen in ResNet, which allows the network to preserve the original features. 

Between dense blocks, transition layers are used to reduce size of feature maps by using 1x1 

convolutions and average pooling [79]. The growth rate determines how many new features 

each layer contributes; a smaller growth rate keeps the model compact, while a larger growth 

rate increases its representational power [80]. Design principles and differences outlined in 

Table 4.1. 

 

Table 4.1. Feature differences between VGG, Inception, ResNet, and DenseNet 

architectures 

Feature VGG Inception ResNet DenseNet 

Depth Medium 
Medium to 

deep  

Very deep

  

Medium to very 

deep 

Parameters High  Moderate 
Moderate to 

high 

Low (fewer than 

ResNet) 

Connectivity Sequential 

Parallel 

convolutions

  

Residual 

connections

  

Dense connections 

Feature 

Reuse 
Limited Limited Partial Extensive 

Gradient 

Flow 
Weak Moderate Strong Very strong 

 

Efficiency Low 
Moderate to 

high 
High  High  

 

DenseNet is highly efficient as it requires fewer parameters than ResNet, VGG, or Inception 

while maintaining high accuracy. Its dense connections enable feature reuse across layers, 

improving generalization and efficiency.  

 

The dense connectivity also enhances gradient flow during backpropagation, making 

DenseNet highly trainable, even for very deep networks.  
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4.2.2 Activation functions 

 

Activation functions are essential components and mathematical functions in neural 

networks that introduce nonlinearity, allows model to learn complex structures within the 

data. Each neuron implements an activation function after computing weighted sum of its 

inputs, determining whether the neuron should be activated. SoftMax, Hyperbolic Tangent 

(Tanh), Sigmoid, Rectified Linear Unit (ReLU), and Leaky ReLU are among the most 

generally used activation functions.  

 

Activation functions identify output of artificial neuron, allowing network to learn nonlinear 

relationships and are applied at each layer of neural network. Artificial neural networks form 

the basic architectural structure that processes input data and produces output results. 

Regularization techniques are used in the training process to reduce the over-learning 

problem of the model. Loss functions help reduce errors with the backpropagation algorithm 

by evaluating the accuracy of the predictions made by model. Optimization algorithms 

improve the prediction performance by updating the weights and bias values of the model. 

In the following sections which are given below, detailed information about each of these 

components will be provided. 

 

SoftMax 

 

SoftMax function is preferred in output layer for multi-class classification missions. This 

method converts raw model outputs into probabilities, ensuring that sum of all probabilities 

equals 1. Each probability corresponds to a specific class [62]. 

 

σ(zi) =  
ezi

∑ ezjn
j=1

 

 

𝜎(𝑧𝑖) represents probability assigned to class and 𝑧𝑖 is the raw score in Eq. 4.2. ∑ 𝑒𝑧𝑗𝑛
𝑗=1  is 

the sum of exponentials of all logits, which normalizes the probabilities. Graph of SoftMax 

function is given at Figure 4.9. 

  

(4.2) 
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Figure 4.9. SoftMax activation function graphs [60] 

 

Sigmoid 

 

Sigmoid function is used in neural networks for 2-class classification as an activation 

function. Function limits any real-valued input into a range between 0 and 1, making 

Sigmoid useful for representing probabilities [63]. 

 

f(x) =  
1

1 +  e−x
 

 

Input value is the 𝑥 and 𝑒 is base of the algorithm in Eq. 4.3. Outputs are easy to interpret as 

probabilities in binary classification. Graph of Sigmoid function is given at Figure 4.10. 

 

    

Figure 4.10. Sigmoid activation function graphs [60] 

 

Rectified Linear Unit (ReLU) 

 

ReLU is an activation function in neural networks application for deep learning models. 

ReLU introduces non-linearity for model, enabling model to learn and complexity 

(4.3) 
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connections in the data. ReLU is computationally simple and effective, making it a popular 

choice in modern architectures. 

 

f(x) =  {
x    if x > 0
0    if x ≤ 0

 

 

𝑥 is input value for the function in Eq. 4.4. If input is positive, output is the input itself. If 

input is zero or negative, output is zero [65]. Graph of ReLU function is given at Figure 4.11. 

 

   

Figure 4.11. ReLU activation function graphs [60] 

 

Leaky Rectified Linear Unit (Leaky ReLU) 

 

Leaky ReLU is a type of ReLU activation function designed to address its key limitation: 

the "dead neuron" problem. Unlike ReLU, which outputs zero for all negative input values, 

Leaky ReLU allows that non-zero gradients for negative inputs.  

 

f(x) =  {
x         if x > 0
αx      if x ≤ 0

 

 

𝑥 is the input value for the function and 𝛼 is a positive constant that controls the slope for 

negative inputs in Eq. 4.5.  

 

Leaky ReLU is widely used in deep learning tasks, especially in networks where ReLU 

struggles with dead neurons [60]. Graph of LReLU function is given at Figure 4.12. Leaky 

ReLU is used in neural network architectures and image processing tasks as an activation 

function due to its ability to prevent dead neurons, enhance feature extraction. 

   

(4.4) 

(4.5) 
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Figure 4.12. LReLU activation function graphs [60] 

 

By retaining information from negative inputs, it enables models to process complex patterns 

more effectively and achieve better performance, particularly on challenging datasets and 

advanced architectures. 

 

Hyperbolic tangent (Tanh) 

 

Tanh function is non-linear solution that limits to input into range between -1 and 1, enabling 

useful for applications where outputs need to capture both positive and negative 

relationships. Graph of Tanh function is given at Figure 4.13. 

 

f(x) = tanh(x) =  
ex − e−x

ex +  e−x
 

 

𝑒 is the base of the logarithm and x being the input value in Eq. 4.6.  

 

 

Figure 4.13. Tanh activation function graphs [60] 

 

 

(4.6) 
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4.2.3 Regularization approaches 

 

Regularization techniques are methods used in deep and machine learnings to prevent 

overfitting on training data. Overfit problem happens when a model performs exceptionally 

good for training data but struggles to generalize to unseen data. Regularization reduces 

model capacity to memorize the training data, encouraging it to learn general patterns 

instead. Regularization techniques contain L1 and L2 Regularizations, Dropout, Early 

Stopping and Batch Normalization [60]. 

 

L1 regularization (Lasso) 

 

L1 regularization prevents overfitting and enhance feature selection. Method works by 

adding punishment term to the loss function. Method stimulates the model to reduce the 

weights of less critical features to zero, effectively performing feature selection [68]. 

 

Loss = Original Loss +  λ ∑ |w| 

 

𝑤 is the weights for model and 𝜆 is the regularization parameter controlling penalty factor. 

During optimization, the algorithm minimizes this regularized loss function, which 

discourages large weight values. 

 

L2 regularization (Ridge) 

 

L2 regularization prevents overfitting by adding a punishment term to the loss function. 

Penalty is commensurate to the sum of the squared values of the model's weights. Unlike L1 

Regularization, which can shrink weights to zero, L2 Regularization reduces their magnitude 

without making them exactly zero [60]. 

 

Loss = Original Loss +  λ ∑ w2 

 

w is the weights for model and λ is the regularization parameter controlling the penalty 

strength. During training, the algorithm minimizes this regularized loss function, 

discouraging large weight values and distributing the importance across all features. 

(4.8) 

(4.9) 
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Dropout 

 

Dropout is a regularization method used for deep learning applications to prohibit overfitting 

by randomly "dropping out" a part of neurons during training. This forces the network to 

learn more strong and generalized representations by preventing it from relying too heavily 

on specific neurons [66, 69].  

 

zi
dropped

=  ri ∗ zi 

 

𝑧𝑖 represents neuron i, and 𝑟𝑖 is a random binary mask applied with a probability (1−𝑝) and 

𝑝 is the dropout rate.  

 

Batch normalization 

 

Batch normalization improves the training of neural networks by normalizing the inputs to 

each layer. It stabilizes and accelerates the training process by reducing the internal shift, 

which refers to changes in the dispersion of inputs to a layer as the model learns for deep 

learning algorithms [67,70].  

 

µ =
1

m
∑ xi

m

i=1

,     σ2 =
1

m
∑(xi − µ)2

m

i=1

 

 

Mean (µ) and variance (𝜎2) calculation are shared in Eq. 4.11. Then, the inputs are 

normalized for the mean and standard deviation. 

 

xi =
xi − µ

√σ2 + Є
 

 

Є is a constant added for numerical balance. The learnable parameters γ (scale) and β (shift) 

are applied to allow the neurons to learn the optimal distribution of the normalized data. 

 

yi = γ ∗ xi + β 

 

(4.10) 

(4.11) 

(4.12) 

(4.13) 
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Early stopping 

 

Early stopping is a regularization technique used to prohibit overfitting by observing the 

model’s generalization ability using validation data while training progresses. If the 

validation loss stops improving or begins to worsen for a specified number of consecutive 

epochs, training is stopped.  

 

4.2.4 Loss functions 

 

A loss function is a mathematical equation to measure difference between the predicted 

output of a model and the actual target value. Model training minimizes the loss function, 

thereby improving the accuracy and performance of the model. Loss functions have an 

important in performance measurement by quantifying how well or poorly a model is 

performing [71].  

 

Regression loss functions 

 

Regression loss functions are mathematical equations to measure failure between predicted 

output and target value in regression tasks. Regression involves predicting continuous 

numerical values, and choice of loss function specification how the model evaluates and 

improves its predictions [71].  

 

Regression loss function is detailed under two headings: Mean Squared Error and Mean 

Absolute Error. 

 

• Mean Squared Error (MSE) 

 

MSE is used for loss function in regression missions for deep learning algorithms. MSE 

provides a quantitative metric to evaluate how well a model's predictions align with the true 

outputs [71]. 

 

MSE =  
1

n
∑(zi − ẑi)

2

n

i=1

 (4.14) 
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• Mean Absolute Error (MAE) 

 

MAE is used for regression missions to measure average absolute difference between 

predicted values. Unlike MSE, MAE treats each errors equally by taking absolute value of 

differences [71]. 

 

MAE =  
1

n
∑ |zi − ẑi|

n

i=1

 

 

Classification loss functions 

 

A classification loss function is a mathematical equation used in machine learning 

applications to evaluate how well a classification model predicts the correct class labels. 

Method quantifies error between the model's predicted probabilities or labels and actual 

target labels, guiding the model to improve its performance during training [71]. There are 

2 types such as Categorical Cross-Entropy and Binary Cross-Entropy. 

 

• Binary Cross-Entropy (BCE) 

 

BCE, which is Log Loss, is a loss function used for 2-class classifications. BCE measures 

variation between the predicted probability and actual binary label for each data point. BCE 

is used when the target variable has only two possible probabilities, such as 0 or 1 [71]. 

 

BCE LOSS =  −
1

n
∑[zi ∗ log(ẑi) + (1 − zi) ∗ log(1 − ẑi)]

n

i=1

 

 

𝑧𝑖 is the actual label for the i-th sample and ẑ𝑖 is the predicted probability of the positive 

class. 

 

• Categorical Cross-Entropy (CCE) 

 

CCE, known as SoftMax loss, is a loss function used in multi-class classification tasks where 

the target output is a single class out of multiple possible classes. CCE calculates difference 

(4.15) 

(4.16) 
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between probability distribution of true label and predicted distribution probability from the 

model [71]. 

 

CCE LOSS =  −
1

n
∑ ∑ zi∗j ∗ log(ẑi∗j)

k

j=1

n

i=1

 

 

𝑛 is patterns number and 𝑘 is number of classes. 𝑧𝑖∗𝑗 is true label for 𝑗-th class of the 𝑖-th 

sample and ẑ𝑖∗𝑗 is predicted probability for the 𝑗-th class of 𝑖-th sample. Suppose a dataset 

has three classes, and the true label for a given sample is represented as [0, 1, 0]. The 

predicted probabilities for the sample are [0.2, 0.7, 0.1].  

 

CCE LOSS =  − log(0.7) ≈ 0.357 

 

The loss decreases as predicted probability for the true class approaches 1, meaning the 

model is making more accurate predictions. 

 

4.2.5 Optimization algorithms 

 

Optimization algorithms are mathematical methods used in machine and deep learning 

applications to minimize loss function by calibrating the model's parameters, such as weights 

and biases. Training models by finding the set of parameters that result in the predictions for 

the given data [18].  

 

Stochastic Gradient Descent (SGD) 

 

SGD is an optimization equation to minimize the loss function by adjusting the model's 

parameters iteratively. Unlike traditional GD, which computes gradients using the all 

dataset, SGD updates parameters based on a single data sample, making faster and more 

stable for large datasets [18]. 

 

θ =  θ − n ∗ ∇L(θ) 

 

(4.17) 

(4.18) 

(4.20) 
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𝜃 are the model parameters and 𝑛 is learning rate. 𝛻𝐿(𝜃) is gradient of loss function with 

dependent to 𝜃. The gradient is computed using a single randomly selected sample.  

 

Adaptive Gradient (Adagrad) 

 

Adagrad is an optimization designed to adjust the learning metric for parameters based on 

magnitude of gradients [18]. 

 

Gt = Gt−1 + gt
2,          θt = θt−1 −

n

√Gt + Є
∗ gt 

 

𝑔𝑡 is gradient of the parameter at time step 𝑡 and 𝐺𝑡 is an accumulated sum of squared 

gradients for the parameter. 𝜃𝑡 is parameter at time step 𝑡 and 𝑛 is initial learning rate. Є is a 

tiny constant to prohibit division by zero.  

 

Root Mean Square Propagation (RMSProp) 

 

RMSProp is used for addresses issues like exploding or vanishing gradients by adapting the 

learning rate for parameter based on the magnitude of gradients [18]. 

 

E[g2]t =  β ∗ E[g2]t−1 + (1 − β) ∗ gt
2,          θt = θt−1 −

n

√E[g2]t + Є
∗ gt 

 

𝑔𝑡 is gradient at time step 𝑡 and β is loss rate for the moving average. 𝑛 is learning rate and 

Є is tiny constant to prohibit division by zero. 

 

Nesterov- accelerated Adaptive Moment Estimation (Nadam) 

 

Nadam (Nesterov accelerated Adaptive Moment Estimation) builds upon Adam. This results 

in a more responsive adjustment to the gradients, especially in scenarios with rapidly 

changing loss surfaces. Nadam often improves convergence speed and generalization 

performance compared to Adam by anticipating direction of the gradient more effectively. 

Adam combines the strengths of SGD with momentum and RMSProp to provide better 

(4.21) 

(4.22) 
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performance. Adam adaptively adjusts learning rate for parameters, making it robust and 

effective for various tasks.  

 

4.3. Common Artificial Intelligence Terms 

 

This section covers the concepts of the epoch, steps per epoch, batch size, target size, test 

and validation accuracies, test and validation losses, overfitting, underfitting, and F1 score. 

 

Epoch 

 

Epoch indicates that number of cycles in deep learning method. Epoch identifies how many 

times the model processes the full dataset. Training for multiple epochs allows the model to 

learn progressively by updating its weights iteratively [60]. 

 

Learning rate 

 

Learning rate controls step size at which a neural network updates its weights during the 

training process. This method controls how quickly or slowly a model learns. 

 

Batch size 

 

Batch size is quantity of training samples processed by the model. Small batch sizes can lead 

to more generalized learning due to increased gradient variability, while larger batch sizes 

offer faster computation but may require more memory [60]. 

 

Step Per Epoch (SPE) 

 

SPE define number of batches the model will process during a single epoch. This parameter 

directly affects the total number of iterations required to complete one pass over the entire 

dataset. 

 

SPE =  
Number of Training Samples

Batch Size
 

 

(4.23) 
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Test accuracy 

 

Test accuracy is rate of correctly predicted patterns out of total samples in the test dataset. 

Results show that how well model generalizes to unseen data [60]. 

 

TA =  
True Predictions

Total Test Examples
 

 

Test loss 

 

Test loss is evaluation of the model's error on test dataset. A lower test loss generally 

indicates better model performance, but this technique must align with other metrics like test 

accuracy to ensure proper evaluation [60]. 

 

Validation accuracy 

 

Validation accuracy measures performance on validation dataset for the model. It helps track 

whether the model is overfitting or underfitting as this provides understandings into how 

well model generalizes to unseen data [60]. 

 

Validation loss 

 

Validation loss indicates error on the validation dataset. It is a critical metric used to identify 

overfitting; when validation loss increases while training loss decreases, model may be 

overfitting to training data [60]. 

 

F1 score 

 

F1 score is harmonic mean of precision and recall, making balanced evaluation and 

imbalanced outputs. 

 

F1 = 2 ∗
Precision ∗ Recall

Precision + Recall
 

 

(4.25) 

(4.24) 
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F1 score shows that model performance in terms of precision and recall [60]. Precision 

calculated proportion true instances out of all predictions made as positive. Recall shows 

that predicted positive samples out of positive samples in the dataset.  

 

Overfitting/Underfitting 

 

Overfitting happens when a model learns not only underlying patterns but also noise and 

irrelevant patterns. As a result, model performs well on the training data on unseen or 

validation data [60]. Underfitting happens when a model is simplistic or lacks the capacity 

to learn underlying patterns in the data [60].  

 

Target size 

 

Target size refers to the dimensions (height and width) to which input images are resized. 

[60]. This resizing ensures that all input images have a consistent shape, making them 

compatible with neural network architecture. 
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5. AUGMENTED DATA AND METHODS 

 

Data Augmentation is a common technique used for artificially increase the dataset in 

machine learning and deep learning projects. It is used to increase the generalization ability 

of the model during training and to prevent overfitting. Image data augmentation is a 

standard method used to provide more successful results for models trained with a limited 

number of images. This record is created by artificially applying various transformations on 

existing data. Thus, the model is made more robust to different conditions and has a higher 

generalization ability. The most commonly used image verification methods are given 

below. 

• Rotation: The image is viewed from certain angles and data is created from different 

perspectives. 

• Flipping: The image can be mirrored vertically or vertically. Vertical reflection 

(horizontal translation) is especially used very often. 

• Cropping & Scaling: Cropping is used in training by cutting a certain part of the image. 

This method allows the model to learn different regions of the object. The size data of the 

image is resized, but the original proportions are preserved. 

• Shifting: The image is shifted a certain amount on the horizontal or vertical axis. 

Various data augmentation techniques such as flipping, scaling, rotation, cropping, and 

shifting were applied to increase the diversity of the training dataset in this study. These 

transformations were performed randomly to ensure that each image underwent a unique 

and unpredictable modification during training. By applying these augmentations in a 

stochastic manner, the model was exposed to a wide range of variations in image orientation, 

size, and position. This approach allowed the model to better generalize by preventing it 

from memorizing specific patterns and helped it to become more robust when encountering 

previously unseen data. The random application of these techniques also simulates natural 

variations that may occur in real-world scenarios, further enhancing the model’s 

adaptability. Prior to data augmentation, the dataset consisted of 100 images per class, 

totaling 500 images, all collected under controlled laboratory conditions. To improve model 

performance and increase generalization capability, data augmentation were applied 

individually to each imaging modality (RGB, SWIR, and MS). This process resulted in 
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larger datasets across different configurations: SET2, SET3, and SET4, with the number of 

samples per class progressively increasing in each set. 

 

Table 5.1. Amount of augmented for MS, SWIR, RGB classes  

Classes 
SET1 

(Original Data) 

SET2 

(Light Aug.) 

SET3 

(Medium Aug.) 

SET4 

(Heavy Aug.) 

Alcohol 100 170 240 310 

Acetone 100 170 240 310 

Flux 100 170 240 310 

Water 100 170 240 310 

Cologne 100 170 240 310 

TOTAL 500 850 1200 1550 

 

The base dataset (SET1) consisted of 100 original images per class. For the augmented sets 

(SET2 to SET4), various augmentation techniques such as flipping, rotation, shifting, 

zooming, and shearing were applied randomly and independently to each image in the RGB, 

SWIR, and MS datasets. This ensured the creation of diverse and balanced datasets across 

all imaging modalities. For multispectral (MS) imaging specifically, each class included five 

spectral bands, with 20 original images per band, totaling 100 images per class. Figure 5.1. 

illustrates the data distribution strategy applied to RGB, SWIR, and multispectral imaging 

datasets. 

 

 

Figure 5.1. Distribution of original datasets for RGB, SWIR, and MS Imaging 
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During augmentation, transformations were applied individually to each spectral band image 

to preserve spectral integrity while increasing data variety. Consequently, the number of 

images grew proportionally across all bands in the MS modality. Moreover, the 

augmentation intensity was progressively increased in parallel with dataset size. For 

example, the rotation range was set to 30° in SET2, 40° in SET3, and 50° in SET4. Similar 

incremental adjustments were made for shifting, shearing, and zooming. This strategy 

enabled the model to learn from a broader set of variations, improved its generalization 

ability, and helped mitigate overfitting. For each imaging modality, the original dataset was 

divided into three subsets such as 10% for testing, 20% for validation, and 70% for training. 

In the case of multispectral data, the training set includes images captured at five distinct 

wavelengths (1200nm to 1600nm), with 14 images per band. This standardized partitioning 

approach ensures consistent evaluation and supports robust model development across 

different imaging types. Experimental evaluations conducted using the DenseNet 

architecture demonstrated that data augmentation significantly enhanced classification 

accuracy across all imaging modalities. Among the tested configurations, SET3 yielded the 

highest accuracy, particularly in the multispectral (MS) modality. These findings highlight 

the effectiveness of multispectral imaging in differentiating visually similar liquid samples 

and underscore the importance of both dataset diversity and augmentation intensity in 

developing robust deep learning models. The performance improvements were especially 

notable in scenarios with limited real-world data. Data augmentation parameters are shown 

in Table 5.2. 

 

Table 5.2. Data augmentation methods and parameters 

Augmentation Method Applied Minimum Value 

Rotation Range 30 

Rescale 1./255 

Width & Height Shift Range 0.3 

Shear & Zoom Range 0.4 

Horizontal Flip True 

 

The image under shows examples of data augmentation applied to liquid samples. Various 

transformations such as rotation, scaling, shifting, zooming, shearing, and horizontal 

flipping were used to simulate different imaging conditions. Data augmentation methods, 

including controlled geometric transformations, were applied to expand the training dataset. 

Each image was altered randomly using predefined parameters to improve the model’s 
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learning capabilities. Data augmentation is a powerful technique to enhance model 

generalization; however, excessive or unrealistic augmentation may introduce noise and 

distort the true characteristics of the data, potentially leading to decreased model 

performance. Therefore, augmentation must be applied in a balanced and controlled manner. 

In this study, the size of the validation and test datasets was relatively limited, with a total 

of 50 test samples for each imaging method. This increases the sensitivity of performance 

metrics to individual misclassifications. For example, a single incorrect prediction in a test 

set of 50 samples leads to a 2% decrease in accuracy. Consequently, variations in evaluation 

metrics are more pronounced and should be interpreted with caution, considering the 

constraints of the dataset size. 

 

 

Figure 5.2. Visual appearance of augmented test liquid data examples 
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6. EXPERIMENTAL EVALUATIONS  

 

In this section, the process of collecting data during the thesis study and the evaluation of 

the developed architecture are detailed. The methodology used for acquiring Short-Wave 

Infrared (SWIR) and Multispectral (MS) images is outlined, and the preferred deep learning 

architecture is validated through obtained results. Various artificial neural network 

architectures were examined, and the one yielding the most optimal results was selected as 

the reference model. In this context, emphasis is placed on the CNN architecture, which is 

widely recognized and utilized in image and video processing. The workflow diagram is 

presented in Figure 6.1.  

 

 

Figure 6.1. Workflow for processing deep learning methods on experimental setup 

 

According to the diagram, the tests began with the preparation of the image acquisition 

mechanism in the laboratory environment and proceeded with the acquisition of datasets for 

RGB, SWIR, and Multispectral (MS) images. RGB images were captured for materials that 

are visually similar and cannot be distinguished through simple observation, such as 

propanol, cologne, water, acetone, and flux. Following this, SWIR images were captured, 

and MS images were obtained using a SWIR camera with five different filters having cut-
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off frequencies of 1600 nm, 1500 nm, 1400 nm, 1300 nm, and 1200 nm. After completing 

the data collection process, deep learning architectures were explored. Since the goal was to 

achieve separation among the five classes using a deep learning approach, CNN architecture, 

which is widely used and suitable for this purpose, was chosen. Experiments with other 

architectures were also conducted, and the best results were obtained with CNN. Tests were 

conducted for binary classification and 5-class classification. Metrics; test accuracy, 

validation accuracy, test loss, validation loss, and F1 scores were recorded and analyzed. 

The importance of IR camera calibrations has been mentioned in previous topics. Now, the 

SWIR camera configuration used for Multispectral imaging will be explained.  

 

6.1. Data Acquisition 

 

In this thesis, RGB, SWIR, and MS images were collected from five different liquids 

selected to facilitate material detection. These liquids were chosen because they cannot be 

distinguished by either the naked eye or an RGB camera. An image of the liquids captured 

with an RGB camera is presented in Figure 6.2. 

 

 

Figure 6.2. Visual appearance of selected test liquids in RGB 

 

RGB images of five different materials were captured in a controlled chamber. Similarly, 

images of the same materials were taken using a SWIR camera. These images are presented 

in Figure 6.3.  
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Figure 6.3. Comparison of the SWIR test images 

 

Multispectral images of the materials were captured under consistent environmental 

conditions using filters with cut-off frequencies of 1.6 µm, 1.5 µm, 1.4 µm, 1.3 µm, and 1.2 

µm. Sample of acquired multispectral (MS) images belonging to alcohol is presented in 

Figure 6.4.  

 

 

Figure 6.4. Multispectral test images at different wavelengths 

 

These multispectral images highlight the spectral differences of the materials across various 

wavelengths, enabling detailed analysis of their unique properties. This approach is 

particularly useful for distinguishing materials that appear identical in traditional RGB 
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images and SWIR images. For each class, separate training, validation, and test folders were 

created. Within these folders, five subfolders corresponding to the five different materials 

were organized, and the collected data was stored accordingly. Each material, regardless of 

the imaging method, includes 100 images.  

 

6.1.1. Environment variables 

 

Environmental effects such as angle and lighting were carefully controlled to ensure 

consistency. A fixed backlight was left inside the black box. This fixed light source was used 

in all imaging methods. The camera angles were adjusted to be perpendicular to the data 

used in RGB, SWIR and MS imaging methods. The appearance of the test set in the 

laboratory environment, along with the RGB, SWIR, and multispectral imaging setups used 

during dataset acquisition, is presented in Figure 6.5.  

 

   

Figure 6.5. Experimental test setup and environments. a) test setup b) RGB, SWIR, and MS 

imaging environments 

 

The ambient temperature is approximately 25 degrees Celsius as it is a laboratory 

environment. The ambient temperature is approximately 25 degrees Celsius since it is a 

laboratory environment. Temperature change is important for the calibration of cameras. 

Especially for SWIR cameras, temperature change is more important because it affects the 

calibration status. In RGB imaging, an RGB camera was used with backlighting in a black 

(a) (b) 
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box. After the SWIR camera was fixed, data was collected using a lens with transparent 

glass. In the MS imaging method, the same structure was not disrupted, and images were 

taken by fixing filters with cut-off frequencies of 1200nm, 1300nm, 1400nm, 1500nm and 

1600nm in front of the lens.  

 

6.1.2. Input standardization 

 

In order to achieve the objectives of this thesis, two different camera types—RGB and 

SWIR—were used. The data collected from these cameras were utilized within the deep 

learning architecture. To minimize the effects of variable differences, the characteristics of 

the acquired data were standardized as much as possible. In this context, resolution and bit 

depth were carefully considered and are explained in this section. A consistent input size 

provides a significant advantage for architectures such as convolutional neural networks. 

Therefore, the resolution for both camera types was set to 640×512 pixels, with 640 pixels 

in width and 512 pixels in height. Adjusting for bit depth is essential for effective feature 

extraction. RGB images include of three main color channels such as red, green, blue, and 

each with 8-bit depth, resulting in a total of 24 bits per pixel.  

 

Table 6.1. Technical specification comparison of different imaging modes 

Specification RGB Image SWIR Image MS Image 

Format PNG PNG PNG 

Width 640 640 640 

Height 512 512 512 

Mode  

(Color Depth) 

RGB 

3 channels 

L - Grayscale 

1 channel 

L - Grayscale  

1 channel 

Minimum 

Pixel Value 

R: 0 

G: 0 

B: 0 

0 (Black) 0 (Black) 

Maximum 

Pixel Value 

R: 255 

G: 255 

B: 255 

255 (White) 255 (White) 

Transformation 

Method 
RGB data  Pseudo-RGB data Pseudo-RGB data 

 

On the other hand, SWIR cameras, which were used for both SWIR and multispectral (MS) 

imaging in this study, produce single-channel outputs in float32 format with a 32-bit depth. 

Importantly, the SWIR camera used in this study provided output data in a normalized 
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format, with pixel values already scaled between 0 and 1. This ensured compatibility across 

different imaging modalities and supported stable and efficient model training. Due to the 

bit depth difference, each pixel value was converted from the range of 0-255 to the range of 

0-1. This process allows the model to learn more stably and quickly because standardized 

inputs are used. The dataset was partitioned into 10% for testing, 20% for validation, and 

70% for training. Distribution was chosen to allow sufficient data for model training while 

maintaining separate subsets for hyperparameter tuning and unbiased performance 

evaluation. The 70-20-10 split was chosen to ensure that the model is trained on a sufficiently 

large portion of the data (70%), while reserving adequate and balanced portions for 

validation (20%) and testing (10%). This distribution helps achieve a good trade-off between 

learning capacity and reliable performance assessment. A smaller training share might limit 

the model’s ability to generalize, especially when the dataset is not very large. SWIR and 

MS images, originally single-channel grayscale, were transformed into pseudo-RGB format 

by duplicating the grayscale values across the three-color channels to ensure compatibility 

with CNN models expecting RGB input. The relevant conversion is shown in the table 

below. 

 

Table 6.2. Pseudo-RGB conversion of SWIR and MS data 

Original Grayscale  Red Channel Green Channel Blue Channel 

0 (Black) 0 0 0 

128 (Gray) 128 128 128 

255 (White) 255 255 255 

 

SWIR and MS images contain spectral information beyond the visible range, offering richer 

content compared to standard RGB data. In this study, single-channel SWIR and MS images 

were transformed into pseudo-RGB format by replicating the same grayscale information 

across all three channels to ensure compatibility with convolutional neural network 

architectures. This conversion process does not result in any loss of information, as it serves 

only to achieve structural compatibility. In contrast, converting RGB data into SWIR or MS 

format would require artificially estimating spectral components that are inherently absent 

in RGB images. Such estimations may introduce significant information loss and degrade 

classification performance. Therefore, the chosen direction of conversion in this study 

provides a more accurate and reliable approach by preserving the integrity of the original 

data while ensuring compatibility with deep learning models. 
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In order to ensure compatibility of single-channel images with deep learning models, each 

pixel's intensity value is replicated across the red, green, and blue channels to create a 

pseudo-RGB representation. This process is commonly referred to in the literature as 

“channel replication” or “grayscale-to-RGB conversion.” The method does not alter the 

underlying image content; instead, it restructures the data format to meet the input 

requirements of convolutional neural networks that are typically designed for three-channel 

(RGB) inputs. As a result, grayscale data can be effectively utilized in RGB-based deep 

learning architectures without loss of information. 

 

6.2. Architecture Selection 

 

Selection of the deep learning architecture and application, primary focus was placed on 

CNN architectures. During the development of these architectures, experiments were 

conducted on the main model and activation functions. The results were compared, and the 

architectural structure that yielded the best performance was selected as the criterion. After 

selecting the ideal architecture, the underlying architecture was applied to RGB, SWIR and 

MS imaging methods and the differences were examined. 

 

6.2.1. Model decision 

 

Architectural experiments were carried out using five different classes of multispectral 

images. When constructing the CNN model, various activation functions can be used, each 

with its own advantages depending on the learning dynamics of the data. For the output 

layer, the SoftMax activation function was selected, as it is well-suited for multi-class 

classification by generating a probability distribution over the possible classes. In this study, 

input images are processed through pretrained CNN architectures. Extracted features are 

forwarded to fully connected layers, and the SoftMax classifier determines the most probable 

class. In one example, the model successfully classified the input as “Alcohol.” Several well-

established CNN architectures were explored to enhance classification performance. VGG16 

and VGG19 offer a straightforward, deep structure with stacked 3×3 convolutional filters. 

While easy to implement, these models require a significant number of parameters and are 

computationally demanding. ResNet, on the other hand, introduces residual connections, 

which help preserve gradient flow and allow training of very deep networks by learning 
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identity mappings. This technique addresses the vanishing gradient issue and supports the 

development of highly expressive models. 

 

DenseNet adopts a different strategy by creating direct connections from each layer to each 

subsequent layers. This dense connectivity leads to efficient feature reuse, improved gradient 

propagation, and often better generalization with fewer parameters. Inception, also known 

as GoogLeNet, takes a modular approach by applying different types of convolution filters 

in parallel. This allows the model to analyze visual features at multiple spatial scales, 

offering a balance between computational cost and accuracy. Each of these architectures 

brings unique strengths, and the selection depends on factors such as task complexity, dataset 

size, and available hardware resources. The full classification pipeline, including feature 

extraction and prediction steps, is illustrated in Figure 6.6. 

 

 

Figure 6.6. Class prediction evaluation of input image 

 

In deep learning, activation functions and optimization algorithms serve fundamentally 

different roles, both of which are essential for the learning process. Activation functions are 

implemented to the output of each neuron in a neural network to introduce non-linearity. 

Without them, the network would behave like a simple linear model, regardless of how many 

layers it has. These functions help the network learn complex patterns by transforming the 

weighted sum of inputs into a non-linear output. General activation functions include ReLU, 
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Leaky ReLU, Sigmoid, SoftMax, and Tanh. Each function has its own characteristics and is 

chosen based on the layer's purpose within the network. On the other hand, optimization 

algorithms, often referred to as “optimizers,” are responsible for updating the model's 

weights during training. They work by minimizing the loss function using gradients 

calculated through backpropagation. Optimizers determine how quickly and effectively the 

model learns from the data. Popular examples include SGD, Adam, RMSprop, Nadam, and 

Adagrad. These algorithms adjust parameters such as learning rates and momentum to 

ensure faster convergence and better accuracy.  

 

While activation functions influence how the network processes information at each layer, 

optimization algorithms guide the network in improving its performance over time. Both are 

crucial: activation functions define how neurons activate, while optimizers drive the learning 

process by fine-tuning the model’s weights. Understanding and selecting the appropriate 

activation function and optimizer combination is key to building a well-performing neural 

network.Different combinations of activation functions were tested. Results obtained using 

LeakyReLU with Adam, SGD, RMSProp, Nadam, and Adagrad optimizers were compared 

for the 5-class classification. The results are shared in Table 6.2. 

 

Table 6.2. Activation function combinations and performance comparison for 5-class MS 

SET3 imaging classification  

Combination/Results Test 

Accuracy (%) 

Validation 

Accuracy (%) 

Test Loss Validation 

Loss 

LeakyReLU – Nadam 96.46 89.09 0.36 0.87 

LeakyReLU – SGD 15.99 17.59 2.32 2.17 

LeakyReLU – RMSProp 85.33 69.01 0.64 0.97 

LeakyReLU – Adagrad 34.66 20.80 2.02 2.17 

 

The Nadam optimizer, when combined with the LeakyReLU activation function, produced 

the most successful outcomes in this study. It delivered the highest accuracy and the lowest 

loss values across both test and validation sets. In particular, Nadam reached a test accuracy 

of 96.46% and a validation accuracy of 89.09%, outperforming other tested optimizers in 

terms of stability and generalization capability. Although RMSProp yielded reasonable 

performance with a test accuracy of 85.33%, its validation accuracy dropped to 69%, 

suggesting that its generalization ability was more limited. In contrast, both SGD and 

Adagrad resulted in considerably lower accuracy and higher loss values. Among them, SGD 

showed the weakest results, with a test accuracy of only 15.99%, indicating its unsuitability 



54 

 

for this classification task. Compared to Adam, which also showed promising performance 

in earlier experiments, Nadam slightly surpassed it in validation accuracy. This confirms 

Nadam as the most reliable optimizer tested in this context. The LeakyReLU–Nadam pairing 

proved to be the most effective setup, offering a strong balance between learning efficiency 

and generalization.  

 

Various well-known CNN architectures, including VGG16, VGG19, ResNet, Inception, and 

DenseNet, were integrated within the model’s design. In particular, DenseNet, Inception, 

and VGG networks are widely acknowledged for their effectiveness in image classification 

and feature extraction tasks. The evaluation results of these architectural configurations, 

applied to a five-class classification scenario using the MS-SET3 dataset, are summarized 

in Table 6.3. 

 

Table 6.3. MS-SET3 results of different functions for 5-class classification 

Hidden 

Layer 

Function 

Optimizer 
Model 

Design 

Test 

Accuracy 

(%) 

Test 

Loss 

Validation 

Accuracy 

(%) 

Validation 

Loss 

F1 

Score 

LeakyReLu Nadam VGG16 94.38 0.51 87.40 0.79 92.12 

LeakyReLu Nadam VGG19 94.82 0.50 88.26 0.76 93.00 

LeakyReLu Nadam DenseNet 96.46 0.36 89.09 0.87 92.24 

LeakyReLu Nadam ResNet 38.66 1.45 25.86 1.56 37.41 

LeakyReLu Nadam Inception 94.73 0.49 83.46 0.51 93.38 

 

“Test Accuracy” shows that percentage of true predictions made by model on the test dataset. 

Higher results are preferred but overfit problem should be observed. If the algorithm overfits, 

early stopping can be applied. “Test Loss” is the error of calculated test dataset and lower 

values indicate a model that performs better on new data.  

 

“Validation Accuracy” measures the percentage of true predictions on the real world which 

means that model’s performance on data it has not seen before. “Validation Loss” is the error 

calculated on the validation dataset during training. F1 score considers both precision and 

recall, indicating how well the model balances between making correct predictions. General 

model parameters are shown in Table 6.4.  
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Table 6.4. General model parameter details for MS, SWIR, RGB classifications 

GENERAL MODEL PARAMETERS 

Model LeakyReLU 

Architectural Function DenseNet 

Activation Function (Output) SoftMax 

Loss Function Categorical Cross-Entropy  

Normalization Batch Normalization 

Optimization Nadam 

Dropout 0.5 

Input Shape 224 * 224 

Learning Rate 1e-4 

L1 & L2 Regularization Yes 

Flatten Yes 

 

The table outlines the model parameters selected for classifying image data obtained through 

multispectral (MS), short-wave infrared (SWIR), and RGB imaging techniques. The overall 

architecture is built on the DenseNet framework, which employs dense layer connectivity to 

strengthen feature transmission and mitigate gradient vanishing issues. LeakyReLU was 

chosen for the hidden layers to support effective information flow, while SoftMax function 

was implemented in the output layer to enable multi-class decision making. In order to 

enhance the model’s ability to generalize and reduce overfitting, various regularization 

strategies were integrated, including dropout, combined L1 and L2 penalties, and batch 

normalization. The optimization process relied on the Nadam algorithm which contributed 

to stable and efficient training. The input dimensions for the model were fixed at 224 × 224 

pixels. Before feeding into the fully connected layers, a flattening operation was performed 

to convert the extracted spatial features into a suitable vector format. These configuration 

choices were made to ensure strong and consistent performance across different imaging 

types. Furthermore, the impact of this deep learning-based approach was examined with 

respect to each imaging modality. Experimental results, as presented in Table 6.5, highlight 

the effectiveness of the model, especially in the multispectral domain.  

 

Table 6.5. Comparison of MS, SWIR, and RGB results without data augmentation 

Class 

SET 

Imaging 

Method 

Test Accuracy 

(%) 

Test 

Loss 

Validation 

Accuracy (%) 

Validation 

Loss 

F1 

Score 

SET1 RGB 17.52 3.64 21.19 9.82 24.41 

SET1 SWIR 38.21 1.82 28.72 2.98 40.26 

SET1 MS 94.23 0.42 85.76 0.83 86.68 
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The table presents the classification results for SET1, which was evaluated without applying 

any data augmentation techniques. Among the imaging methods, MS (Multispectral) shows 

significantly better performance in both test and validation metrics, with a test accuracy of 

94.23%, validation accuracy of 85.76% and an F1 score of 86.68%. In contrast, RGB and 

SWIR methods exhibit much lower performance, especially in validation accuracy and F1 

scores. These results highlight the advantage of MS imaging in distinguishing between the 

classes when no data augmentation is applied. The results of the images reproduced by 

applying the data augmentation technique are shared in Table 6.6. 

 

Table 6.6. Augmented MS, SWIR and RGB data for 5-class classification 

Class 

SET 

Imaging 

Method 

Test Accuracy 

(%) 

Test 

Loss 

Validation 

Accuracy (%) 

Validation 

Loss 

F1 

Score 

SET2 RGB 22.36 2.98 22.98 8.62 30.26 

SET2 SWIR 40.58 1.76 28.93 2.95 40.36 

SET2 MS 95.68 0.42 86.20 0.99 88.15 

SET3 RGB 34.16 2.11 23.72 8.16 35.70 

SET3 SWIR 48.96 1.69 31.62 2.93 45.89 

SET3 MS 96.46 0.36 89.09 0.87 92.24 

SET4 RGB 27.37 1.89 31.19 8.21 29.36 

SET4 SWIR 45.99 1.74 35.87 2.37 46.44 

SET4 MS 93.96 0.46 87.12 0.79 88.15 

 

The findings indicated that SWIR imaging alone did not yield sufficiently high classification 

accuracy, likely due to limited spectral resolution. In contrast, multispectral (MS) imaging 

offered a more detailed spectral representation, enabling the network to distinguish between 

materials that appear nearly identical in conventional image data. Through the use of MS 

filters capturing responses at distinct wavelengths, even subtle spectral differences became 

apparent, significantly enhancing classification performance. The overall structure and layer 

distribution of the proposed CNN model are presented in Figure 6.7. The CNN architecture 

used in this study was designed to classify five different liquid classes; hence, the output 

layer includes five neurons. Each input image of size 224×224 is passed through a 

DenseNet121-based architecture, resulting in a 7×7 output feature map before reaching the 

final dense layers. The fully connected layers include 256 neurons, and Leaky ReLU 

activation function is applied to enhance non-linearity and information flow. 
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Figure 6.7. Layer structure and parameters of the DenseNet based model 

 

Backbone of the model, DenseNet121, consists of 121 layers and employs dense 

connectivity, allowing each layer to receive feature maps from all preceding layers. This 

structure improves feature distribution and reduces the vanishing gradient problem. For 

evaluation, a model inference approach was applied based on the pre-trained weights of 

DenseNet121, fine-tuned to the dataset. 

 

In a study [34], to further investigate the spectral contributions of individual bands in the 

multispectral imaging setup, a series of experiments were conducted. In these experiments, 

the model was trained using data augmented from a single spectral band at a time. Each 

“band” corresponds to a specific wavelength region, capturing distinct spectral features. The 

results demonstrate that Band 4, Band 14, and Band 17 achieved the highest classification 

performance among all bands. For example, Band 4 yielded an F1 score of 0.80, while Band 

14 and Band 17 reached 0.81 and 0.82, respectively. These results indicate that certain 

wavelengths carry more discriminative information, playing a key role in distinguishing 

visually similar liquid materials.  

 

In another article [39]  examines the effectiveness of visible and multispectral imaging (MSI) 

techniques in identifying varying levels of meat adulteration, particularly in mixtures 

containing pork and chicken. The experiments were conducted on both fresh and frozen-

thawed samples, with classification accuracy evaluated across different mixing ratios. The 

results demonstrate that the visible imaging system exhibited performance limitations, with 

the lowest classification accuracy recorded as 58.33%. In contrast, the MSI approach showed 

significantly higher robustness, achieving a minimum accuracy of 87.50% and, in many 

cases, delivering near-perfect classification outcomes. This performance difference 
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highlights the superior capability of MSI in capturing spectral features that are not 

discernible in the visible spectrum.  

 

Building upon this insight, the final model configuration using LeakyReLU activation and 

the Nadam optimizer achieved a test accuracy of 96.46% and an F1 score of 92.24% in this 

study. These results confirm that multispectral imaging, particularly when enhanced by well-

selected spectral bands and a robust CNN architecture like DenseNet121. An inverse 

relationship is observed between the number of classes and test accuracy according to Table 

6.7. and decreasing from 92.20% to 68.69% as the class count increases from 4 to 6. This 

decline in accuracy highlights the increasing complexity of multiclass classification tasks, 

especially when visually similar classes are involved. The use of multispectral (MS) imaging 

in our research significantly mitigated this issue. The MS modality achieved the highest test 

accuracy of 96.46%, even with five classes, which is notably higher than those reported in 

the ensemble CNN-based wound classification study.  

 

Table 6.7. Test accuracies in different multiclass classification scenarios 

Work Material 
Num of 

Classes 
Classes 

Test 

Accuracy 

(%) 

Ref. [35] 
Solid 

(Injuries) 
5-class 

BURN GRANULATING 

NECROTIC 

DEBRIDED 

SLOUGH 

SURGICAL WOUND 

84.94 

This study Liquid 5-class 

ALCOHOL 

ACETONE 

FLUX 

COLOGNE 

WATER 

96.46 

Ref. [39] 
Solid 

(Meat) 
3-class 

BEEF 

MIXED 

MUTTON 

93.33 

 

The reported test accuracy for this method is 84.94%. In contrast, the second study focuses 

on the classification of visually similar liquid substances, namely alcohol, acetone, flux, 

cologne, and water. Utilizing an ensemble deep CNN-based classification approach, this 

study achieved a test accuracy of 96.46%. These results show that the examined method in 

the current study outperforms the earlier work, despite the challenge posed by the visual 
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similarity of the liquid classes. The high classification accuracy indicates the model's strong 

discriminative capability and its potential effectiveness in similar multi-class classification 

tasks. 

 

6.2.2. Classification metrics 

 

The distribution in the number of classes was tried to be kept equal. Ensuring equality in the 

distribution of data between classes is important for the performance of machine and deep 

learning models. An imbalance in the classes in the dataset may cause model to perform 

poorly in terms of the amount of data in the class. According to these results, the accuracy 

rates within each class were compared, except for the general accuracy result. Since these 

results show the rate at which each class is matched, accuracy values are taken as reference. 

The low margin between them shows that the matching is done properly and correctly. 

Confusion matrix is evaluated within the scope of 2-class classification because confusion 

matrix is a tool that visualizes the performance of a classification model by analyzing the 

predicted labels with the target labels. Therefore, Figure 6.8. and Figure 6.9. present the 

confusion matrices generated for the MS-SET1 (without data augmentation) and MS-SET3 

(with data augmentation) test and validation datasets.  

 

 

Figure 6.8. Confusion matrix for MS-SET1 test and validation datasets 

 

The information content of the classes for MS-SET1 is detailed in the table below. 

Accordingly, "Test Precision", "Validation Precision", "Test Recall", "Validation Recall", 

"Test F1 Score", and "Validation F1 Score" are calculated separately for each class. These 
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metrics allow for a more detailed estimation of model's output on a per-class basis, beyond 

overall accuracy. The differences between test and validation scores also provide findings 

on the model’s generalization capability and potential class-specific learning challenges. The 

values presented in the table are calculated based on the corresponding confusion matrices 

and then rounded for clarity. Decimal values were not explicitly written; instead, 

approximate figures were shared to enhance readability and facilitate interpretation. 

 

Table 6.8. Classification performance metrics for MS-SET1 confusion matrix  

Classes 

Test 

Precision 

(%) 

Test 

Recall 

(%) 

Test F1 

Score 

(%) 

Validation 

Precision 

(%) 

Validation 

Recall 

(%) 

Validation 

F1 Score 

(%) 

Alcohol 100 80 88 87 70 77 

Acetone 100 90 94 84 80 82 

Flux 88 80 84 66 70 68 

Cologne 53 70 60 68 75 71 

Water 72 80 76 59 65 61 

 

When comparing these results, it is evident that although overall classification performance 

improved with data augmentation, the misclassifications tend to occur in similar classes 

across both datasets. This indicates that the remaining classification errors are likely due to 

inherent visual similarities between certain classes rather than insufficient training data. As 

a result, even after augmentation, the model continues to confuse visually similar samples, 

such as cologne and water, highlighting the challenge of inter-class similarity in spectral 

image classification.  

 

 

Figure 6.9. Confusion matrix for MS-SET3 test and validation datasets 
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The figure displays confusion matrices for the validation and test sets of a classification 

model. The validation confusion matrix (right) shows that the model performs well overall, 

but still presents several misclassifications, particularly between a few closely related 

classes. The test confusion matrix (left) reflects a similar pattern, with relatively good 

classification accuracy but with observable confusion between certain class pairs. The 

information content of the classes for MS-SET3 is detailed in the table below. Accordingly, 

"Test Precision", "Validation Precision", "Test Recall", "Validation Recall", "Test F1 

Score", and "Validation F1 Score" are calculated separately for each class. 

 

Table 6.9. Classification performance metrics for MS-SET3 confusion matrix  

Classes 

Test 

Precision 

(%) 

Test 

Recall 

(%) 

Test F1 

Score 

(%) 

Validation 

Precision 

(%) 

Validation 

Recall 

(%) 

Validation 

F1 Score 

(%) 

Alcohol 100 80 89 88 70 78 

Acetone 100 100 100 86 90 88 

Flux 100 80 89 73 80 76 

Cologne 57 80 67 68 75 71 

Water 80 80 80 68 65 67 

 

Results presented in the table reflect classification performance of the model for each class 

(alcohol, acetone, flux, cologne, and water) during both the test and validation phases. In the 

test set, the "Acetone" class achieved the highest performance with 100% precision and 

recall, while the "Cologne" class showed the lowest performance with a precision of 57%. 

This indicates that the model frequently misclassified samples from other classes as 

"Cologne." In contrast, precision and recall rates for the remaining classes were relatively 

high, suggesting that the model was generally effective in distinguishing between these 

categories. In the validation phase, the "Acetone" class once again yielded the highest F1 

score at 88%, while the "Water" class had the lowest score at 67%. Overall, the metrics in 

the validation phase were slightly lower than those in the test phase. This difference suggests 

that the model adapted better to the training data, while its generalization capability varied 

across different classes. These metrics were calculated based on three fundamental 

evaluation criteria rather than solely relying on overall accuracy. Precision measures ratio of 

true positive predictions for a class to all predictions made for that class. For instance, in the 

test set, the model correctly predicted 8 "Cologne" samples (True Positives) and incorrectly 

labeled 6 samples from other classes as "Cologne" (False Positives). Therefore, precision is 

calculated as 8 / (8 + 6) = 0.57. Recall is the ratio of accurately predicted "Cologne" samples 
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to the total actual instances of the "Cologne" class, computed as 8 / (8 + 2) = 0.80. F1 score 

is the harmonic mean of precision and recall. These class-specific metrics are critical for 

evaluating not only the overall performance but also how balanced and reliable the model is 

across individual categories. 

 

The consistency between validation and test results suggests that the model generalizes 

reasonably well. In machine learning, not only validation and test performances but also 

training performance plays a critical role in evaluating a model. While test and validation 

results indicate how well the model generalizes to unseen data, training results provide 

evidence of how effectively the model has learned from the data it was exposed to. A 

balanced assessment across all three components ensures a more reliable and comprehensive 

evaluation of the model’s behavior. MS validation and training confusion matrix results are 

given Figure 6.10. 

 

 

Figure 6.10. Confusion matrix for MS-SET3 validation and training datasets 

 

This figure presents confusion matrices for the training and validation sets of the MS-SET3 

dataset. The training confusion matrix (right) shows that the model performs very well on 

the training data, with a high number of correct predictions and minimal misclassifications 

across all classes.  

 

The outcomes indicate that the model has effectively learned the training patterns. Overall, 

this comparison highlights the importance of evaluating not just test and validation sets, but 

also the training performance, to gain a full understanding of the model’s behavior.  
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Figure 6.11. presents the confusion matrices for the SWIR-SET3 dataset, showing the 

model’s performance on the test set (left) and validation set (right). In both matrices, there 

are noticeable misclassifications across multiple classes, indicating that the model struggles 

to distinguish clearly between certain categories. The validation matrix shows slightly better 

performance compared to the test set, with a higher number of correct classifications in some 

classes. These results suggest that the model may be slightly overfitting to the training data 

or that the class features in the SWIR domain are not distinct enough. Further optimization 

or additional data augmentation may be required to improve generalization performance. 

 

 

Figure 6.11. Confusion matrix for SWIR-SET3 test and validation datasets 

 

The information content of the classes for SWIR-SET3 is detailed in the table below. 

Accordingly, "Test Precision", "Validation Precision", "Test Recall", "Validation Recall", 

"Test F1 Score", and "Validation F1 Score" are calculated separately for each class. 

 

Table 6.10. Classification performance metrics for SWIR-SET3 confusion matrix 

Classes 

Test 

Precision 

(%) 

Test 

Recall 

(%) 

Test F1 

Score 

(%) 

Validation 

Precision 

(%) 

Validation 

Recall 

(%) 

Validation 

F1 Score 

(%) 

Alcohol 50 30 37 40 44 42 

Acetone 54 60 57 63 60 61 

Flux 38 50 43 45 45 45 

Cologne 40 40 40 50 45 47 

Water 45 45 45 61 65 63 
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The overall distribution suggests that the model’s ability to generalize using SWIR data is 

limited and could benefit from further tuning, additional data, or enhanced preprocessing to 

improve class separability. The confusion matrix results for the RGB data set are shared in 

Figure 6.12. According to these results, it is seen that the model experienced confusion 

between some classes in both test and validation datasets.  

 

 

Figure 6.12. Confusion matrix for RGB-SET3 test and validation datasets 

 

The test and validation confusion matrices created for the RGB data set show that the model 

experiences high confusion between certain classes. In particular, it is seen that some classes 

are frequently confused with each other and the model has low accuracy rates in certain 

classes. Model struggles to differentiate specific features between these classes, highlighting 

the need for further optimization. For the SWIR data set, it can be said that this situation is 

better than the RGB data set. The separation of the data is made more easily. However, it is 

not at the desired level. The confusion matrix distribution for the MS data set is generally 

consistent when the obtained test and validation accuracy values are examined.  

 

Table 6.11. Classification performance metrics for RGB-SET3 confusion matrix 

Classes 

Test 

Precision 

(%) 

Test 

Recall 

(%) 

Test F1 

Score 

(%) 

Validation 

Precision 

(%) 

Validation 

Recall 

(%) 

Validation 

F1 Score 

(%) 

Alcohol 25 10 14 18 20 19 

Acetone 19 70 30 10 11 10 

Flux 33 20 25 26 20 22 

Cologne 50 20 28 20 25 22 

Water 0 0 0 27 25 26 
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The information content of the classes for RGB-SET3 is detailed in the table below. 

Accordingly, "Test Precision", "Validation Precision", "Test Recall", "Validation Recall", 

"Test F1 Score", and "Validation F1 Score" are calculated separately for each class. 

 

6.2.3. Performance visualization 

 

This part focuses on the graphical representation of the model performance, including 

metrics such as test and validation accuracies also test and validation losses. Visualizations 

such as accuracy-loss curves, confusion matrices, and feature maps are provided to illustrate 

the results and analyze the model's effectiveness.  

 

Graphs of losses and accuracies for test and validation output, architecture created using 

DenseNet and Adam selected as the initial approach in this work and yielding the best results 

are presented in Figure 6.13.  

 

 

Figure 6.13. Multispectral imaging (SET3) accuracy (left) and loss (right) outputs for 5-

class DenseNet – Nadam classification at 100 epochs 

 

Performance of the model is good on the test data, with validation accuracy stabilizing 

around 80%. The test loss decreases consistently, demonstrating that the model is 

minimizing errors on the test set.  

 

Validation loss initially decreases, and since there is an overall decreasing trend in losses. 

Results obtained from the DenseNet-Adam experiment conducted with different epoch 

numbers are presented in Figure 6.14.  
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Figure 6.14. Multispectral imaging (SET3) accuracy (left) and loss (right) outputs for 5-

class DenseNet – Nadam classification at 50 epochs 

 

In addition, results of test performed using SWIR camera with the DenseNet - Adam 

configuration are shown in Figure 6.15. A test accuracy of 59.96% and a validation accuracy 

of 47.46% were obtained. Some oscillation in accuracy can be observed. Although there was 

a decreasing trend in the loss values, the validation loss still showed oscillations.  

 

 

Figure 6.15. SWIR imaging (SET3) accuracy (left) and loss (right) outputs for 5-class 

DenseNet – Nadam classification at 100 epochs 

 

When the data obtained using the RGB imaging method for 5 different classes was tested 

with the DenseNet – Adam architecture. While the test loss remains stable, the validation 

loss value increases as the number of epochs increases and shown in Figure 6.16. 
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Figure 6.16. RGB imaging (SET3) accuracy (left) and loss (right) outputs for 5-class 

DenseNet – Nadam classification at 100 epochs 

 

6.3 Additional Applied Techniques 

 

In addition to the primary experimental setup, supplementary techniques were applied to 

further analyze and improve the model's output and robustness. The methods under this 

section helped to evaluate the consistency of results, reduce overfitting risk, and examine 

model performance in more generalized contexts. 

 

6.3.1. K-Fold cross validation  

 

K-Fold Cross Validation is a generally used evaluation method in machine learning that 

supports assess a model’s ability to generalize to unseen data. Instead of relying on a single 

train-test split, which may lead to biased or unstable performance measurements, dataset is 

divided into K equal-sized folds. The model is then trained and validated K times, each time 

using a different fold as the validation set and remaining folds for training. After all iterations 

are done, the results are averaged to provide a more reliable estimate of the model’s 

performance.  

 

This method helps reduce variance and ensures that sample in the dataset is used exactly 

once for validation and K−1 times for training, thus offering a balanced and robust 

evaluation. Method is useful when the dataset is limited in size, as it maximizes the usage of 

available data. 
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In this study, 5-Fold Cross Validation was applied to validate the model trained with Nadam 

optimizer and LeakyReLU activation function. Original validation accuracy of 89.09% 

(obtained through a fixed validation set) for MS-SET3 slightly decreased to 85.86% after 

applying the K-Fold strategy.  

 

Table 6.12. presents the results of 5-Fold Cross Validation performed on the model trained 

with the MS-SET3 dataset using the Nadam optimizer and LeakyReLU activation function. 

The average accuracy obtained across the five folds was 85.86%, with an average loss of 

0.39.  

 

Table 6.12. 5-fold cross validation results for MS-SET3  

FOLD 
Validation 

Accuracy (%) 
Loss Precision (%) Recall 

Validation F1 

Score (%) 

1 84.20 0.42 86.75 0.83 84.85 

2 87.10 0.39 88.02 0.86 87.00 

3 85.90 0.37 89.30 0.84 86.60 

4 86.40 0.38 87.85 0.86 86.90 

5 85.70 0.40 86.10 0.82 84.95 

Average 85.86 0.39 87.60 0.84 86.06 
 

Compared to fixed validation set results, a moderate decline in performance is observed. 

This decrease aligns with the expectations outlined in model evaluation literature and reflects 

a more realistic estimation of the model’s generalization capability across varying data splits. 

These results confirm that although the initial fixed-split validation yielded higher scores, 

the model still maintains strong and consistent performance when evaluated using a robust 

K-Fold validation strategy. Method also shows that initial fixed validation split may have 

provided a somewhat optimistic estimate.  

 

Moreover, K-Fold Cross Validation allowed for a deeper analysis of class-level performance 

consistency across folds. It was observed that certain classes were consistently predicted 

more accurately, while others showed higher variability in predictions. This insight can 

guide future work in data balancing, feature engineering, or class-specific augmentation to 

improve weaker areas of the model. Structure of 5-Fold cross validation and performance 

averaging is shown in Figure 6.17. 
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Figure 6.17. Structure of 5-Fold cross validation and performance averaging 

 

The figure demonstrates the process of 5-Fold Cross Validation, where the dataset is divided 

into five equal parts. In each iteration, one part is used for validation while the remaining 

four are used for training. This process is repeated five times, ensuring that every subset is 

used once as the validation set. At the end of all iterations, the performance scores from each 

round are averaged to obtain a reliable estimate of the model’s overall performance. This 

approach provides a more balanced and generalizable evaluation of the model. 

 

6.3.2. Data merge application  

 

The experiments on MS, SWIR and RGB data sets were carried out separately. In this part, 

all data were combined and the algorithm was tested. The results obtained from the 

experiments conducted at 100 epochs are shown in Table 6.13.  

 

Table 6.13. Merged image dataset results 

Results 
Merged Image Dataset 

(MS, SWIR, RGB) 

Test Accuracy (%) 71.21 

Validation Accuracy (%) 58.97 

Test Loss 0.94 

Validation Loss 1.75 

F1 Score 59.43 
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Table shows the test results of the dataset created by combining MS, SWIR and RGB data. 

The test accuracy was calculated as 71.21%, which indicates that the model has limited 

performance on the combined dataset. The validation accuracy was determined as 58.97%, 

which is slightly lower than the test accuracy.  

 

Test loss was calculated as 0.94 and the validation loss was calculated as 1.75. A higher 

validation loss than test loss may indicate that model made more errors on validation data. 

The F1 score was determined as 59.43, which may indicate that the model does not exhibit 

a balanced classification performance.  
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7. CONCLUSION AND FUTURE WORK 

 

This study investigates the use of multispectral, short-wave infrared, and visible imaging 

techniques in combination with deep learning architectures to classify five visually similar 

liquid substances that cannot be distinguished by the human eye or standard RGB cameras. 

These materials share similar visual characteristics, making them particularly challenging to 

classify using conventional imaging approaches. Emphasizing the effectiveness of 

multispectral imaging, which captures spectral responses at discrete wavelengths, the study 

demonstrates that MS imaging is far more successful in differentiating such substances based 

on their spectral signatures. Experimental findings revealed that MS imaging achieved a 5-

class classification accuracy of 96.46%, significantly outperforming SWIR (59.96%) and 

RGB (44.16%) methods. 

 

In terms of model selection, Convolutional Neural Networks were found to be the most 

suitable architecture for this classification task due to their powerful feature extraction 

capabilities. Various configurations were systematically tested, including different 

activation functions, optimization algorithms, epoch values, and data augmentation 

parameters. Among these, the combination of LeakyReLU activation function and Nadam 

optimizer produced the most successful results, with the highest accuracy and lowest loss 

values observed in both test and validation phases. This finding underscores the importance 

of selecting appropriate training configurations when working with complex image-based 

classification tasks. 

 

Given the relatively small size of the original dataset, the study placed particular emphasis 

on the use of data augmentation techniques to artificially increase number of training 

samples and improve model generalization. Techniques such as rotation, scaling, width and 

height shifting, shearing, and flipping were applied at empirically determined values. 

Notably, a rotation range of 40 degrees and a transformation factor of 0.3 for other 

augmentation parameters were found to be the most effective. These enhancements led to 

measurable improvements in performance, validating the use of augmentation in data-

limited environments. 
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To further support the model evaluation, confusion matrices were generated and analyzed, 

providing insight into class-level accuracy and misclassification patterns. These matrices 

confirmed the consistency between overall test accuracy and per-class performance, 

illustrating that the results were both statistically sound and practically interpretable. 

Additionally, when a mixed-data training approach was applied by combining all MS, 

SWIR, and RGB datasets the model achieved a test accuracy of 55.21% and a validation 

accuracy of 51.06%, suggesting that multi-modal integration, while slightly better than RGB 

alone, may introduce complexity without yielding proportional benefits. 

 

In conclusion, this study demonstrates that MS imaging combined with deep learning 

constitutes a highly effective approach for the classification of visually similar liquid 

substances. Findings highlight the potential of MS data in applications where subtle spectral 

differences must be detected. For future research, the integration of multiple architectures, 

larger and more diverse datasets, and advanced ensemble learning strategies could further 

enhance performance. Additionally, exploring novel imaging technologies and refining 

model configurations based on specific application requirements may lead to more robust 

and scalable solutions in the domains of food authentication, material inspection, and quality 

control. 
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